spacy库中文模型的安装

1. 安装方法

2. 模型的下载与安装

之前的spacy库官方一般提供有英文模型,安装的方法如下所示

python -m spacy download en

一般在spacy2.3.0版本库上可以使用中文模型,官网上提供有三个中文模型zh_core_web_sm,zh_core_web_md,zh_core_web_lg,下载的方式如下所示

python -m spacy download zh_core_web_sm
python -m spacy download zh_core_web_md
python -m spacy download zh_core_web_lg

中文多任务CNN在OntoNotes上进行了训练。用于分配单词向量,POS标注,依存句法分析和命名体识别。在Wikipedia和OSCAR(通用抓取)上使用FastText CBOW训练的单词向量。使用的时候可以使用以下命令进行加载模型文件:

spacy.load('zh_core_web_md')

spacy库的使用方法在后续博文中详细讲述。

3. 参考

[1]spacy中文模型官网
[2]spacy官网

### 如何在 PyCharm 中安装 Spacy #### 创建 Anaconda 虚拟环境并配置 PyCharm 解释器 为了确保项目的独立性和依赖管理,在创建新项目之前建议先建立一个新的 Conda 环境。通过 `conda create` 命令来新建一个 Python 版本合适的虚拟环境,并激活该环境。 接着,在 PyCharm 设置里指定此自定义的 Conda 环境作为项目的解释器,这样就能保证后续操作都在正确的环境中执行[^1]。 #### 安装 Spacy 及其模型 对于特定版本的需求,比如解决 `en_core_web_sm` 缺失的问题,则需按照官方文档指引精确匹配SpaCy 和模型版本: ```bash pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz pip install spacy==3.0.0 ``` 上述命令会从 GitHub 上获取对应的小型英语语料,并将其与 SpaCy 一起安装到当前活跃的Python环境中去[^2]。 如果需要支持中文处理能力的话,还需要额外下载适合中文分词等任务的语言文件(如 `.whl`),并通过本地路径完成安装: ```bash pip install "C:\path\to\your\downloaded\zh_core_web_sm-version.whl" ``` 这里假设已经提前访问浏览器前往 [GitHub Releases](https://github.com/explosion/spacy-models) 页面找到最新版次的链接地址并完成了相应资源的手动下载工作[^3]。 #### 验证安装情况 最后一步是在 IDE 内部确认这些外部工具链是否被正确加载进来。可以通过简单的导入测试来进行初步检验: ```python import spacy print(spacy.__version__) nlp = spacy.load('en_core_web_sm') # 或者 'zh_core_web_sm' 对应不同语言需求 doc = nlp(u"This is a sentence.") for token in doc: print(token.text, token.pos_) ``` 这段脚本不仅能够打印出所使用的 SpaCy 的具体版本号,还能尝试加载预训练好的 NLP 模型实例化对象用于进一步的数据分析流程中[^4]。 另外一种方式则是利用 PyCharm 自带的功能界面查看已有的软件列表及其详情信息。依次点击菜单栏中的 File -> Settings... ,再导航至 Project: <Your_Project_Name> -> Python Interpreter 查看所有可用模块的状态[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值