图论(四)—最短路问题(Dijkstra)

一、最短路

        概念:从某个点 A 到另一个点B的最短距离(或路径)。从点 A 到 B 可能有多条路线,多种距离,求其中最短的距离和相应路径。

        最短路径分类:

        单源最短路:图中的一个点到其余各点的最短路径

        多源最短路:图中任意两点的最短路径

         框架图解:

二、朴素Dijkstra算法

        算法思想(仅限于非负权重值):从起始点开始,使用贪心的策略,通过加点的方法,每次遍历到起始点距离最近且未被访问过的邻接节点 t ,将 t 加入到集合 S 中,直到访问过所有节点。

     通过 N 次循环确定 n 个点到起点的最短路距离 

        时间复杂度为 O(n^{2})

        1.在没有确定最短路中的所有点(集合 S 以外)找出距离起点最近的点 t   

        2.对 t 进行标记,加入到集合中

        3.用 t 更新其他点的最短路距离

       集合 S :已经确定最短路的点(被访问过的点)

        定义数组 dis:从起始点到某点 ( 3 号节点 ) 的最短距离( dis[3] )

        定义二维数组add: 

                add[u][v] 表示从 节点 u 到 节点 v 的距离(区分单向与双向,双向则add[v][u]=add[u][v]

      初始化: dis[1]=0 \, \, \, \, \, \, \, \, \, dis[x]=+\bowtie \, \, \, \, \, \, \, \, \, 2\leq x\leq n (以节点 1 为起始点)

        若 节点 u 与 节点 v 之间没有路径,初始化为 add[u][v]=+\Join

      核心代码:

for(int i=1;i<=n;i++)
{
	int t=-1;
	for(int j=1;j<=n;j++)   // 在没有确定最短路中的所有点找出距离最短的那个点 t 
	   if(!s[j] && (t==-1||dis[t]>dis[j]))
	    t=j;                  
	s[t]=true; // 代表 t 这个点已经确定最短路了
	for(int j=1;j<=n;j++) // 用 t 更新其他点的最短距离 
	 dis[j] = min(dis[j],dis[t]+add[t][j]);
}

样例解释:对于下图,求出节点 A 的单源最短路 

 

n12345
dis07395

三、堆优化dijkstra算法

        在朴素dijkstra算法中,遍历点是通过for循环对所有节点判断一遍得出的,”对所有节点判断“这一操作消耗了更多的时间。

        算法思想:

        可以通过堆(优先队列)进行优化,堆(优先队列)存储节点起始点到该点最短距离,堆(优先队列)按照距离自动排序取距离最小且未被访问过的点,同通过用邻接链表(或邻接表)储存图的方法,再进行松弛操作,并将进行松弛操作的节点插入堆中。

         ①.初始化距离:数组dis 都初始化为 0x3f3f3f3f(无穷大),并将 1 号节点插入堆中 (dis[1]=0)

         ②取出堆顶的点(当前起始点到该点距离最小),判断是否被访问过,不断弹出取堆顶,直至找到未被访问的节点,再根据邻接链表(或邻接表)拓展。

         ③进行松弛操作,把松弛的点和距离插入到堆中。

        堆优化代码:

void dij(int s)
{
	priority_queue< pair<int,int> > q;  // 利用优先队列
	q.push(make_pair(0,s));
	memset(dis,127,sizeof(dis));
	dis[s]=0;
	while(q.size())
	{
		int u=q.top().second;
		q.pop();
		if(vis[u]==1) continue;
		vis[u]=1;
		for(int i=head[u];i;i=edge[i].next) // 链式前向星
		{
			int v=edge[i].to;
			int w=edge[i].w;
			if(dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				q.push(make_pair(-dis[v],v));  // 将路径以负数保存,优先队列默认大根堆
			}
		}
	}
}

关于dijkstra算法的正确性证明,参考博文:

Dijkstra贪心算法的准确性证明_为什么这种方法求下来的路径一定是最短?试分析一下它的正确性-CSDN博客

四、dijkstra算法不能用于有负权边的图

        通过上述dijkstra思想可以得出,每次松弛操作就是通过当前离起始点最近的点来更新其他点的距离,下面举例说明。

当此时通过 节点 4 更新其他节点, dijkstra 思想已经确定 dis [ 4 ] 为 起始点 到 节点 4 的最短路,显然错误。

  • 20
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用\[1\]提供了使用Python的networkx库绘制网络图和计算最短加权路径的示例代码。该代码使用了一个包含顶点和边的列表,并使用add_nodes_from和add_weighted_edges_from方法将它们添加到图中。然后,使用nx.shortest_path_length方法计算了从顶点v1到顶点v11的最短加权路径长度为13。\[1\] 引用\[2\]提供了一个计算最短路径的Python程序示例。该程序使用了numpy和networkx库。首先,定义了一个包含顶点和边的列表,并使用add_nodes_from和add_weighted_edges_from方法将它们添加到图中。然后,使用nx.shortest_path_length方法计算了最短路径长度,并将结果存储在一个字典中。接下来,使用numpy创建了一个6x6的零矩阵,并使用两个嵌套的for循环将最短路径长度填充到矩阵中。最后,使用矩阵乘法计算了运力,并找到了最小运力和对应的位置。\[2\] 引用\[3\]提供了关于Dijkstra算法的一些背景信息。Dijkstra算法是一种寻找最短路径的算法,适用于所有权重大于等于0的情况。它可以用于解决从一个起始点到任意一个点的最短路径问题。\[3\] 综上所述,如果你想在Python中计算图论中的最短路径,可以使用networkx库和Dijkstra算法。你可以根据引用\[1\]和引用\[2\]中的示例代码进行操作。 #### 引用[.reference_title] - *1* *3* [运筹学——图论与最短距离(Python实现)](https://blog.csdn.net/weixin_46039719/article/details/122521276)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学建模:图论模型 — 最短路模型示例 (Python 求解)](https://blog.csdn.net/qq_55851911/article/details/124776487)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值