二分法求方程的根
求下面方程的一个根: f(x) = x3-5x2+10x-80 = 0
若求出的根是a,则要求|f(a)| <= 10-6
●解法:对f(x)求导,得f'(x)=3x2-10x +10。由一元二次方程求根公式知方呈f'(x)= 0 无解,因此f(x)恒大于0。故f(x)是单调递增的。易知f(0) < 0且f(100) >0,所以区间[0,100]内必然有且只有一个根。由于f(x)在[0,100]内是单调的,所以可以用二分的办法在区间[0,100]中寻找根。
求下面方程的一个根: f(x) = x3-5x2+10x-80 = 0
若求出的根是a,则要求|f(a)| <= 10-6
●解法:对f(x)求导,得f'(x)=3x2-10x +10。由一元二次方程求根公式知方呈f'(x)= 0 无解,因此f(x)恒大于0。故f(x)是单调递增的。易知f(0) < 0且f(100) >0,所以区间[0,100]内必然有且只有一个根。由于f(x)在[0,100]内是单调的,所以可以用二分的办法在区间[0,100]中寻找根。
#include <iostream>
#include <cmath>
using namespace std;
#define EPS 1e-6
double f(double x)
{
return x*x*x-5*x*x+10*x-80;
}
int main()
{
double root,x1=0,x2=100,y;
root=x1+(x2-x1)/2;
int triedTimes=1;
y=f(root);
while(fabs(y)>EPS)
{
if(y>0)
x2=root;
else
x1=root;
root=x1+(x2-x1)/2;
y=f(root);
triedTimes++;
}
cout<<root<<endl;
cout<<"查找次数"<<triedTimes<<endl;
return 0;
}