数字图像处理(10):图像复原(去噪,C语言)

1. 复原被加性高斯噪声污染的图像

在数字图像中的高斯噪声的主要来源出现在采集期间。 由于不良照明和/或高温引起的传感器噪声。在数字图像处理中,可以使用空间滤波器来降低高斯噪声,但是当对图像进行平滑时,结果可能导致精细缩放的图像边缘和细节的模糊,因为它们也对应于被阻挡的高频。

用于噪声去除的常规空间滤波技术包括:平均(卷积)滤波,中值滤波和高斯平滑。
在这里插入图片描述

分析:对于加性高斯噪声污染的图像分别用了3x3算术均值滤波,3x3几何均值滤波,3x3中值滤波。可以看到几何均值滤波相对于算术均值滤波要更清晰一些。相比而言,中值滤波效果不如均值滤波效果好(在高斯噪声污染情况下)。

2. 复原被椒盐噪声污染的图像

椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。盐和胡椒噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。
在这里插入图片描述

分析:对于椒盐噪声污染的图像分别用了3x3算术均值滤波,3x3几何均值滤波,3x3中值滤波。可以看到对于椒盐噪声来讲,中值滤波是三个当中最好的选择。其中几何均值滤波效果最差,不适合用于此种情况。

3. 代码实现

平台:vs2015
语言:C语言
3x3算术均值滤波关键代码
在这里插入图片描述

3x3几何均值滤波关键代码
在这里插入图片描述

3x3中值滤波关键代码
在这里插入图片描述

遇到的问题

在进行3x3几何均值滤波的时候,得到的输出图像是这样的
在这里插入图片描述

经检查,打印其中的累乘结果,发现是因为是溢出了(用的double型)。

想了想也是,8个0~255的数相乘,结果是挺大的。于是对像素的值进行了归一化操作。

归一化操作后能出结果,但结果也不对——
在这里插入图片描述
最后发现是由于改成归一化后用了*=进行累乘。却忘记了赋值1 的操作。导致当有一个计算结果是0的话,后面的计算结果全是零。
在这里插入图片描述

添加之后,问题解决。

本工程源码已更新至github,欢迎star,欢迎PR:)

数字图像在获取的过程中,由于光学系统的像差、 光学成像衍射、 成像系统的非线性畸变、 摄影胶片的感光的非线性、 成像过程的相对运动、 大气的湍流效应、环境随机声等原因, 图像会产生一定程度的退化。因此,必须采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目, 这就是图像复原, 也称为图像恢复图像复原图像增强有类似的地方, 都是为了改善图像。但是它们又有着明显的不同。图像复原是试图利用退化过程的先验知识使已退化的图像恢复本来面目,即根据退化的原因, 分析引起退化的环境因素,建立相应的数学模型, 并沿着使图 像降质的逆过程恢复图像。从图像质量评价的角度来看, 图像 复原就是提高图像的可理解性。而图像增强的目的是提高视感 质量,图像增强的过程基本上是一个探索的过程, 它利用人的心理状态和视觉系统控制图像质量, 直到人们的视觉系统满意为止。 图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而,图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型,就是图像复原的主 要任务。经过反向过程的数学模型的运算,要想恢复全真的景物图像比较困难。所以, 图像复原本身往往需要有一个质量标 准, 即衡量接近全真景物图像的程度,或者说,对原图像的估 计是否到达最佳的程度。 由于引起退化的因素众多而且性质不同,为了描述图像退化过程所建立的数学模型往往多种多样,而恢复的质量标准也往往存在差异性,因此图像复原是一个复杂的数学过程,图像复原的方法、技术也各不相同。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值