使用TensorFlow Lite Micro流程记录(带源码)

0 关于tflite micro

请添加图片描述

关于tflite micro在这里接不做过多介绍了,可以查看相关论文:TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems

我非常喜欢tflite micro,占用资源很少,是一个用来学习推理框架的好工程。

1 克隆仓库

在tensorflow的git里面,看到git已经迁移至一个单独的仓库

As of June 25, 2021, the TFLM codebase has moved to a stand-alone github repository.

于是执行命令:
git clone https://github.com/tensorflow/tflite-micro.git

2 编译静态库

求助了ChatGPT 4.0:

「在这个 https://github.com/tensorflow/tflite-micro , 怎么编译静态库?」

在TensorFlow Lite Micro的GitHub仓库中,你可以使用以下步骤来编译静态库:

首先,你需要克隆仓库:
git clone https://github.com/tensorflow/tflite-micro.git

进入克隆下来的仓库目录:
cd tflite-micro

使用make命令编译静态库:
make -f tensorflow/lite/micro/tools/make/Makefile TARGET=<TARGET> TARGET_ARCH=<ARCH> microlite

在上述命令中,<TARGET>应替换为你的目标平台(如linux),<ARCH>应替换为你的目标架构(如x86_64)。这将在tensorflow/lite/micro/tools/make/gen/<TARGET>_<ARCH>/lib/目录下生成一个名为libtensorflow-microlite.a的静态库。

请注意,你可能需要根据你的具体需求和环境来修改这些步骤。例如,你可能需要安装额外的依赖库,或者修改makefile来包含你需要的特性。

真是太棒了,于是我执行指令:

make -f tensorflow/lite/micro/tools/make/Makefile TARGET=linux TARGET_ARCH=x86_64 microlite

在 make/download/ 目录下,分别下载了flatbuffers、gemmlowp、kissfft、pigweed、ruy(如果你“网络不佳”,这里可能要花些精力)。

编译完成后,得到了静态库文件——
ar: creating gen/linux_x86_64_default/lib/libtensorflow-microlite.a

3 模型转换

以lenet5模型为例:

  1. 先把tflite模型转换为cpp文件:
    xxd -i lenet5.tflite > lenet5.cpp
  2. 包一下模型接口
    在lenet5.cpp的文件最后加入了这几行代码
    unsigned char * get_model_pointer()
    {
         
        return lenet5_tflite;
    }
    
    unsigned int get_model_size()
    {
         
        return lenet5_tflite_len;
    }
    
  3. 增加函数头文件
    #ifndef __MODEL_INTERFACE_H__
    #define __MODEL_INTERFACE_H__
    
    unsigned char * get_model_pointer();
    unsigned int get_model_size();
    
    #
在STM32上部署TensorFlow Lite Micro需要以下步骤: 1. 准备开发环境:从TensorFlow官方GitHub库中获取TensorFlow Lite Micro的代码,并安装必要的软件工具链和开发环境,如GNU Arm Embedded Toolchain和STM32CubeMX。 2. 配置STM32CubeMX:使用STM32CubeMX配置你的STM32微控制器,包括选择正确的型号、引脚配置和时钟设置等。 3. 构建TensorFlow Lite Micro库:在你的开发环境中,使用Makefile或CMake来构建TensorFlow Lite Micro库。这将生成一个静态库文件(.a文件)。 4. 创建应用程序:根据你的具体应用需求,编写一个C/C++应用程序,包括载入模型、输入数据、运行推理以及处理输出结果等。你可以使用TensorFlow提供的示例代码作为起点。 5. 链接库文件:将TensorFlow Lite Micro库文件与你的应用程序进行链接,以便在编译时正确引用和调用库中的函数和结构。 6. 编译和烧录:使用GNU Arm Embedded Toolchain编译你的应用程序,并将生成的可执行文件烧录到STM32微控制器中。这可以通过ST-Link调试器或其他烧录工具来完成。 7. 测试和调试:在STM32上运行你的应用程序,并通过串口或其他调试接口来观察和验证推理结果。根据需要,进行调试和优化。 请注意,在部署TensorFlow Lite Micro到STM32上时,你需要确保你的STM32微控制器具备足够的计算和存储资源来运行模型。较大的模型可能需要更高级别的STM32系列,而较小的模型则可能适用于低端系列。还需要根据具体情况进行硬件和软件的优化,以确保性能和功耗的平衡。 此外,具体的步骤和细节可能因为使用的STM32型号、开发环境和TensorFlow Lite Micro版本而有所差异。在实际操作中,参考相关的文档、教程和示例代码,并参与相关的开发者社区来获取更详细和具体的指导。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值