两类称重问题:一、给定砝码,可以称多少种不同的质量。二、怎么安排使得可以称重的次数最少。
一、砝码个数
用天平称量物体质量,方法是1.一个秤盘放物体,另一个秤盘放砝码。这对应着二进制思想。2.一个秤盘放物体,两个秤盘都可以放砝码,二者的差对应着物品质量。这对应着三进制的思想。
1. 二进制思想
将称量物品的最大质量写成二进制的形式,那么需要砝码的个数就是二进制的位数。
2. 三进制思想
将称量物品的最大质量写成三进制的形式。N个砝码可以最多称量1+3+…+3N-1即(3N-1-1)/2的质量。在三进制中的1对应着一个砝码,三进制中的2对应着(10)3-(01)3,也就是在两个秤盘上分别放上(10)3和(01)3这么多质量的秤砣。
二、称出假珍珠
称出假珍珠一般有三类问题。1.已知真珍珠比假珍珠重些,或者轻些。2.不知道真珍珠比假的请还是重,但是又一代真珍珠(足够多)的砝码。3.不知道假珍珠轻重,也没有真砝码。
1. 已知真珍珠比假珍珠重些,或者轻些。
对于这样的问题,称N次,最多能在3N颗珍珠中鉴定。
(10000000000000000000000000)3对于这样的情况,每一次称量都会使得位数降一,最后到倒数第二位的时候,再称量一次,根据已知条件就可以得出结论。
2. 不知道真珍珠比假的请还是重,但是又一代真珍珠(足够多)的砝码。
称量N次,能够在(1+3N)/2颗珍珠中。称量出假的。
在知道轻重的情况下,N次称量最多3N颗珍珠,因为现在不知道轻重,因此需要一次来判断是轻还是重,因此总的称量量就约莫减半,但是还是会有细小的差别。
(111111111111112)3在这种情况中,每一次都是取出最高位的(10000)3来和标准的珍珠进行比对,如果重量不一样,那么直接在这之间找假的,如果一样,那么就在剩下的之中找。
对于同样称量N次,这种情况比知道轻重位数要少1位。
3. 不知道假珍珠轻重,也没有真砝码。
称量N次,能够在3N-2+3N-2+(1+3N-1)/2颗中鉴定出假的。
也就是类似于(10111111111112)3这种形式。比如(101112)3分成(10000)3,(10000)3,(11112)3这样的三个数。首先是前两项进行比较,如果质量相等,那么就在第三部分中含有假珍珠。这时候划归成第二个模型。如果质量不相等,那么再通过一次比较,也就知道了是重的含有假珍珠还是轻的含有假珍珠,划归成第一个模型。
参考资料:《初等数学模型》,黄忠裕 著,科学出版社