2015.4.1 网络及其存在的环境

网络是由点和边组成,但是当我们赋予网络社交属性的时候,我们会发现,社交网络有其独特的因素也可以被纳入到当前的网络中来。

1.同质现象
在社交网络中互相联系的人倾向于相似。
社交网络中边的形成一种是由于节点之间的联系比较多,或者说有相同的朋友,另一种就是我们经常在相同的地点见面,第一中关系可以通过边来看出那些点之间有潜在的连边的可能,但是对于第二种来说,我们并不能从图上看出来。(也许可视化可以,但是计算呢?)总之,外部环境对于边的形成这个问题值得研究一下。
量化同质性:如果我们要研究一件事情,首先要去量化,量化就有数据可以计算,就容易多了。同质性测试:如果跨性别变所占的比例显著低于2pq,则就有同质性迹象。说的是什么呢?在自然状态下,假设社交网络中有两个阵营,所占比例为p,q,那么按照随机的角度来说,p的那个阵营所有的联系应该占所有的p^2这么多,另外一个阵营则是q^2,互相联系的边应该是2pq。
如果比2pq大或者小则成为同质性或者逆同质性。
(高中生物有个哈待温伯格定律似乎有一些类似)

2.同质现象背后的机制:选择与社会影响
这是外文书翻译过来的,说的话简直太多了,简而言之:相似、社交网络中关系具有相关关系。到底是因为相似从而建立了社交网络呢还是因为建立了社交网络从而相似呢?前者称为选择,后者称为社会影响。
再次吐槽:老外的书来回说好几遍读起来都麻烦。

3.归属
我们之前讨论的网络可以成为社会网络,就是由人和之间的关系所构成,加上了归属信息之后,我们可以构建一个新的网络。这个归属信息称之为社团(foci)。于是我们就有了一个二部图,一部分是人,另一部分是所属的社团,可以研究两组数据如何相互关联。
社会网络和归属网络时刻变化,表示一种协同演化。其中可以有三种关系,分别是三元闭包,社团闭包,会员闭包。第一个的三元是三个人;第二个的三元是一个社团两个人,研究的是两个人因为在同一个社团形成关系的可能;第三个的三元是一个社团两个人,研究的是一个人因为另一个人进入社团的概率。

4.从在线数据中看链接的形成
从数据角度来定量测量上述理论。

5.隔离的一种空间模型
“物以类聚,人以群分”说的大概就是这个。
谢林模型,描述的是同质性对于空间隔离的影响与作用。
我总感觉这像是一种优化。这个优化所要达到的目标就是,从个体的角度来说,周围的同类人尽可能多,每一步都在逐渐逼近最优解。因此我们可以说,我用计算机在模拟这个过程的时候,不论是用的是什么策略,一旦我的目标确定——尽可能让我周围住着同类人,模拟的结果都是差不多的。只不过约束的松紧不同导致最后的具体结果可能不同,但是趋势都是相同的。
谢林模型的趋势就是趋同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值