Comparison of LDA and PCA 2D projection of Iris dataset

本文通过对比IRIS数据集在PCA和LDA两种降维方法下的2D投影,展示了这两种技术如何有效地将四维数据可视化,并强调了它们在分类上的区别和优势。
摘要由CSDN通过智能技术生成

Reference:
[1]http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

IRIS数据集合是一个很简单的对于鸢尾花的分类,每一朵花儿的花瓣和萼片的长款数据,也就是四个维度,2d pca和lda两种方法实现了二维的降维,还是很有趣的。可以看出具有较强的区分性。

"""
=======================================================
Comparison of LDA and PCA 2D projection of Iris dataset
===========================&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值