# 数学建模：经济学中的数学问题

2 篇文章 0 订阅

## 解法

S S i = ∑ S ⊆ N ∖ { i } ( n − ∣ S ∣ − 1 ) ! ⋅ ∣ S ∣ ! n ! ( v ( S ∪ { i } ) − v ( S ) ) SS_i = \sum_{S \subseteq N \setminus \{ i \}} \frac{(n-|S|-1)!\cdot |S|!}{n!} (v(S\cup \{i\}) - v(S))

S S D = ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( A , B , C , D ) − v ( A , B , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , B , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , D ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , D , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , D , C ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , C ) − v ( B , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , D ) − v ( B , A , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , B ) − v ( C , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , D ) − v ( C , A , B , D ) ) + ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( D , A , B , C ) − v ( A , B , C ) ) = 1 12 \begin{aligned} SS_D &= \frac{(3-1)!\cdot0!}{4!} (v(A,B,C,D)-v(A,B,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,B,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,D)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,D,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,D,C)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,C)-v(B,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,D)-v(B,A,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,B)-v(C,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,D)-v(C,A,B,D)) \\ &\quad + \frac{(3-1)!\cdot0!}{4!} (v(D,A,B,C)-v(A,B,C)) \\ &= \frac{1}{12} \end{aligned}

2 3 v ( A , B , C , D ) + 1 6 v ( C , A , B , D ) = 1 12 \frac{2}{3} v(A,B,C,D) + \frac{1}{6} v(C,A,B,D) = \frac{1}{12}

v ( { D } ) = 5 16 v(\{D\})=\frac{5}{16} v ( A , B , C ) + v ( A , B , D ) + v ( A , D , C ) + v ( B , A , C ) + v ( B , A , D ) + v ( C , A , D ) + v ( C , A , B ) + v ( D , A , B , C ) = 50 v(A,B,C)+v(A,B,D)+v(A,D,C)+v(B,A,C)+v(B,A,D)+v(C,A,D)+v(C,A,B)+v(D,A,B,C)=50 代入该公式，即得：

2 3 ⋅ 5 16 + 1 6 ⋅ v ( C , A , B , D ) = 1 12 \frac{2}{3} \cdot \frac{5}{16} + \frac{1}{6} \cdot v(C,A,B,D) = \frac{1}{12}

## 结论

v = ( 50 : [ 31 , 21 , 11 , 11 48 ] ) v=(50:[31,21,11,\frac{11}{48}]) 时，可使得投票人 D 的 Shapley-Shubik 指数等于 1 12 \frac{1}{12}

• 0
点赞
• 0
收藏
觉得还不错? 一键收藏
• 打赏
• 3
评论
05-30 788
03-26 1971
12-01 3328
02-08 5682
01-28 857
11-27 2531
09-09 1348
03-02 6073

Zhaojiaqi006

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。