数学建模:经济学中的数学问题

在包含a、b、c和d四位投票人的加权投票系统中,要使d的Shapley-Shubik指数等于1/12,需找到v值。通过Shapley-Shubik指数公式计算,得出v(D)=5/16,进一步推导得出v(C,A,B,D)=11/48,所以当v=(50:[31,21,11,11/48])时,条件成立。
摘要由CSDN通过智能技术生成

考虑一个包含 a、b、c 和 d 四位投票人的加权投票系统,[50:31,21,11,v]. 整数 v 取何值,可使得投票人 d 的 shapley-shubik 指数等于 1/12?

解法

在一个具有 n n n 个投票人的加权投票系统中,任何一个投票人 i i i 的 Shapley-Shubik 指数可以通过以下公式计算:

S S i = ∑ S ⊆ N ∖ { i } ( n − ∣ S ∣ − 1 ) ! ⋅ ∣ S ∣ ! n ! ( v ( S ∪ { i } ) − v ( S ) ) SS_i = \sum_{S \subseteq N \setminus \{ i \}} \frac{(n-|S|-1)!\cdot |S|!}{n!} (v(S\cup \{i\}) - v(S)) SSi=SN{i}n!(nS1)!S!(v(S{i})v(S))

其中, N N N 是投票人集合, v ( S ) v(S) v(S) S S S 投票的加权平均值。问题中有四位投票人( n = 4 n=4 n=4),根据题意,小组由 A、B、C、D 四个成员组成,只需要找到使得 D 投了一票时,其 Shapley-Shubik 指数恰好等于 1 / 12 1/12 1/12 v v v 值。

首先,考虑到 S S D = 1 / 12 SS_D = 1 / 12 SSD=1/12,将 1 / 12 1/12 1/12 代入上面的公式,然后化简,可得 v ( { D } ) = 5 16 v(\{D\})=\frac{5}{16} v({D})=165。这是因为:

S S D = ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( A , B , C , D ) − v ( A , B , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , B , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , D ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , D , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , D , C ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , C ) − v ( B , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , D ) − v ( B , A , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , B ) − v ( C , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , D ) − v ( C , A , B , D ) ) + ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( D , A , B , C ) − v ( A , B , C ) ) = 1 12 \begin{aligned} SS_D &= \frac{(3-1)!\cdot0!}{4!} (v(A,B,C,D)-v(A,B,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,B,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,D)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,D,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,D,C)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,C)-v(B,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,D)-v(B,A,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,B)-v(C,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,D)-v(C,A,B,D)) \\ &\quad + \frac{(3-1)!\cdot0!}{4!} (v(D,A,B,C)-v(A,B,C)) \\ &= \frac{1}{12} \end{aligned} SSD=4!(31)!0!(v(A,B,C,D)v(A,B,C))+4!(31)!1!(v(A,B,C)v(A,B,D))+4!(31)!1!(v(A,B,D)v(A,B,C,D))+4!(31)!1!(v(A,B,C)v(A,D,C))+4!(31)!1!(v(A,D,C)v(A,B,C,D))+4!(31)!1!(v(B,A,C)v(B,A,D))+4!(31)!1!(v(B,A,D)v(B,A,C,D))+4!(31)!1!(v(C,A,B)v(C,A,D))+4!(31)!1!(v(C,A,D)v(C,A,B,D))+4!(31)!0!(v(D,A,B,C)v(A,B,C))=121

注意到只有第一个式子中的 v ( A , B , C , D ) v(A,B,C,D) v(A,B,C,D) 和第十个式子中的 v ( C , A , B , D ) v(C,A,B,D) v(C,A,B,D) D D D 的加权票值相关。由此可以得出:

2 3 v ( A , B , C , D ) + 1 6 v ( C , A , B , D ) = 1 12 \frac{2}{3} v(A,B,C,D) + \frac{1}{6} v(C,A,B,D) = \frac{1}{12} 32v(A,B,C,D)+61v(C,A,B,D)=121

v ( { D } ) = 5 16 v(\{D\})=\frac{5}{16} v({D})=165 v ( A , B , C ) + v ( A , B , D ) + v ( A , D , C ) + v ( B , A , C ) + v ( B , A , D ) + v ( C , A , D ) + v ( C , A , B ) + v ( D , A , B , C ) = 50 v(A,B,C)+v(A,B,D)+v(A,D,C)+v(B,A,C)+v(B,A,D)+v(C,A,D)+v(C,A,B)+v(D,A,B,C)=50 v(A,B,C)+v(A,B,D)+v(A,D,C)+v(B,A,C)+v(B,A,D)+v(C,A,D)+v(C,A,B)+v(D,A,B,C)=50 代入该公式,即得:

2 3 ⋅ 5 16 + 1 6 ⋅ v ( C , A , B , D ) = 1 12 \frac{2}{3} \cdot \frac{5}{16} + \frac{1}{6} \cdot v(C,A,B,D) = \frac{1}{12} 32165+61v(C,A,B,D)=121

则得出 v ( C , A , B , D ) = 11 48 v(C,A,B,D)=\frac{11}{48} v(C,A,B,D)=4811。因此,当 v = ( 50 : [ 31 , 21 , 11 , 11 48 ] ) v=(50:[31,21,11,\frac{11}{48}]) v=(50:[31,21,11,4811]) 时,D 投了一票的 Shapley-Shubik 指数为 1 12 \frac{1}{12} 121

结论

v = ( 50 : [ 31 , 21 , 11 , 11 48 ] ) v=(50:[31,21,11,\frac{11}{48}]) v=(50:[31,21,11,4811]) 时,可使得投票人 D 的 Shapley-Shubik 指数等于 1 12 \frac{1}{12} 121

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhaojiaqi006

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值