考虑一个包含 a、b、c 和 d 四位投票人的加权投票系统,[50:31,21,11,v]. 整数 v 取何值,可使得投票人 d 的 shapley-shubik 指数等于 1/12?
解法
在一个具有 n n n 个投票人的加权投票系统中,任何一个投票人 i i i 的 Shapley-Shubik 指数可以通过以下公式计算:
S S i = ∑ S ⊆ N ∖ { i } ( n − ∣ S ∣ − 1 ) ! ⋅ ∣ S ∣ ! n ! ( v ( S ∪ { i } ) − v ( S ) ) SS_i = \sum_{S \subseteq N \setminus \{ i \}} \frac{(n-|S|-1)!\cdot |S|!}{n!} (v(S\cup \{i\}) - v(S)) SSi=S⊆N∖{i}∑n!(n−∣S∣−1)!⋅∣S∣!(v(S∪{i})−v(S))
其中, N N N 是投票人集合, v ( S ) v(S) v(S) 是 S S S 投票的加权平均值。问题中有四位投票人( n = 4 n=4 n=4),根据题意,小组由 A、B、C、D 四个成员组成,只需要找到使得 D 投了一票时,其 Shapley-Shubik 指数恰好等于 1 / 12 1/12 1/12 的 v v v 值。
首先,考虑到 S S D = 1 / 12 SS_D = 1 / 12 SSD=1/12,将 1 / 12 1/12 1/12 代入上面的公式,然后化简,可得 v ( { D } ) = 5 16 v(\{D\})=\frac{5}{16} v({D})=165。这是因为:
S S D = ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( A , B , C , D ) − v ( A , B , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , B , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , D ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , B , C ) − v ( A , D , C ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( A , D , C ) − v ( A , B , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , C ) − v ( B , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( B , A , D ) − v ( B , A , C , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , B ) − v ( C , A , D ) ) + ( 3 − 1 ) ! ⋅ 1 ! 4 ! ( v ( C , A , D ) − v ( C , A , B , D ) ) + ( 3 − 1 ) ! ⋅ 0 ! 4 ! ( v ( D , A , B , C ) − v ( A , B , C ) ) = 1 12 \begin{aligned} SS_D &= \frac{(3-1)!\cdot0!}{4!} (v(A,B,C,D)-v(A,B,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,B,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,D)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,B,C)-v(A,D,C)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(A,D,C)-v(A,B,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,C)-v(B,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(B,A,D)-v(B,A,C,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,B)-v(C,A,D)) \\ &\quad + \frac{(3-1)!\cdot1!}{4!} (v(C,A,D)-v(C,A,B,D)) \\ &\quad + \frac{(3-1)!\cdot0!}{4!} (v(D,A,B,C)-v(A,B,C)) \\ &= \frac{1}{12} \end{aligned} SSD=4!(3−1)!⋅0!(v(A,B,C,D)−v(A,B,C))+4!(3−1)!⋅1!(v(A,B,C)−v(A,B,D))+4!(3−1)!⋅1!(v(A,B,D)−v(A,B,C,D))+4!(3−1)!⋅1!(v(A,B,C)−v(A,D,C))+4!(3−1)!⋅1!(v(A,D,C)−v(A,B,C,D))+4!(3−1)!⋅1!(v(B,A,C)−v(B,A,D))+4!(3−1)!⋅1!(v(B,A,D)−v(B,A,C,D))+4!(3−1)!⋅1!(v(C,A,B)−v(C,A,D))+4!(3−1)!⋅1!(v(C,A,D)−v(C,A,B,D))+4!(3−1)!⋅0!(v(D,A,B,C)−v(A,B,C))=121
注意到只有第一个式子中的 v ( A , B , C , D ) v(A,B,C,D) v(A,B,C,D) 和第十个式子中的 v ( C , A , B , D ) v(C,A,B,D) v(C,A,B,D) 与 D D D 的加权票值相关。由此可以得出:
2 3 v ( A , B , C , D ) + 1 6 v ( C , A , B , D ) = 1 12 \frac{2}{3} v(A,B,C,D) + \frac{1}{6} v(C,A,B,D) = \frac{1}{12} 32v(A,B,C,D)+61v(C,A,B,D)=121
将 v ( { D } ) = 5 16 v(\{D\})=\frac{5}{16} v({D})=165 和 v ( A , B , C ) + v ( A , B , D ) + v ( A , D , C ) + v ( B , A , C ) + v ( B , A , D ) + v ( C , A , D ) + v ( C , A , B ) + v ( D , A , B , C ) = 50 v(A,B,C)+v(A,B,D)+v(A,D,C)+v(B,A,C)+v(B,A,D)+v(C,A,D)+v(C,A,B)+v(D,A,B,C)=50 v(A,B,C)+v(A,B,D)+v(A,D,C)+v(B,A,C)+v(B,A,D)+v(C,A,D)+v(C,A,B)+v(D,A,B,C)=50 代入该公式,即得:
2 3 ⋅ 5 16 + 1 6 ⋅ v ( C , A , B , D ) = 1 12 \frac{2}{3} \cdot \frac{5}{16} + \frac{1}{6} \cdot v(C,A,B,D) = \frac{1}{12} 32⋅165+61⋅v(C,A,B,D)=121
则得出 v ( C , A , B , D ) = 11 48 v(C,A,B,D)=\frac{11}{48} v(C,A,B,D)=4811。因此,当 v = ( 50 : [ 31 , 21 , 11 , 11 48 ] ) v=(50:[31,21,11,\frac{11}{48}]) v=(50:[31,21,11,4811]) 时,D 投了一票的 Shapley-Shubik 指数为 1 12 \frac{1}{12} 121。
结论
当 v = ( 50 : [ 31 , 21 , 11 , 11 48 ] ) v=(50:[31,21,11,\frac{11}{48}]) v=(50:[31,21,11,4811]) 时,可使得投票人 D 的 Shapley-Shubik 指数等于 1 12 \frac{1}{12} 121。