基础算法题——放苹果(动态规划)

该博客探讨了一道基础算法题,涉及将苹果放入盘子中。通过动态规划的方法,提出了两种情况:存在空盘子和不存在空盘子,并给出了状态转移方程dp[i][j] = dp[i][j-1] + dp[i-j][j],用于计算不同数量苹果和盘子的摆放方法总数。此外,还提及了相关C++实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述

题解

  1. 盘子上放苹果分为两种情况:
    ①、存在空盘子 ②、不存在空盘子(每个盘子上都有苹果)
  2. dp[i][j]:将 i 个苹果放入 j 个盘子中的摆放方法总数。
    dp[i][j-1]:存在空盘子
    dp[i-j][j]:不存在空盘子
    状态转移方程:dp[i][j] = dp[i][j-1] + dp[i-j][j] (i>=j)

代码

#include<bits/stdc++.h>
using namespace std;

int dp[15]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值