最近开始做算法题,准备坚持至少一年。解决完问题可能会来记录一下。
嗯,正式开始之前顺便说说今天的上课的一个细节,权当日记:
上计算机网络的时候,我和旁边的同学讨论我原创的一个算法题。
前面的同学:“你们俩能不能别吵了?”
面对这个学巨,我内心非常惭愧。
然后…
他趴在桌上睡着了…睡着了….
好的,废话说完,进入正题,讲讲我吵到前面这位同学睡觉时讨论的那道题。
这个问题是我再思考八皇后的问题时想到的,实际上,我误以为皇后不能斜着走,跟中国象棋中的车一样,结果就成了八皇后问题的弱化版。
在中国象棋棋盘上有10行9列兵线,现在考虑在棋盘上放k<9个车,使他们互相之间不能吃掉对方,问有多少种方法?如果把棋盘改成m×n的呢?
下面是思路:
设 f(k,n,m) 为k个车放到n×m棋盘上的方案数(k<=min{m,n})
为了避免重复计算,按行为主序排序这m×n个位置。假设选中第一个放车的位置为 (i,j) ,那么前i行和第j列不能再放其他车:第i行和第j列显然不能再放,至于前i-1列为什么不能再放,是因为如果放了,它就排在 (i,j) 前面, (i,j) 就不是第一个选中的位置了。接下来能放车的位置如下图阴影区域所示。
剩下k-1个点先从左侧阴影区选p( 0≤p≤k−1 )个,有f(p,n-i,j-1)种方案。剩下k-1-p个点从右侧阴影区选择,有f(k-1-p,n-i- p</