锡安泉讲干货:带你打开量化投资的黑箱

“ 如果对数据进行深入研究,它们将会表明任何事情。”

                          ——格雷戈 · 伊斯特布鲁

近年来,随着外资金融机构进入到中国,在发达国家市场占交易主要地位的量化交易方法,也给国内金融市场投资结构带来了巨大的影响,所覆盖金融产品包括外汇、权益市场、数字资产市场等,量化交易方法也在金融投资过程中应用越来越广泛,并被投资者熟知。但目前国内量化投资发展较为缓慢,投资者参与量化投资积极度较低,本文将详细介绍量化投资,旨在为投资者提供一定的指导和帮助。

一、何为量化投资

量化交易(Quantitative Trading)也称自动化交易、程序化交易、算法交易,是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

量化交易简单来说就是应用统计学和概率学,通过抽样和相关性分析,应用多元回归和时间序列分析以及数学模型来形成的投资决策。定量投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于定量投资管理是“定性思想的量化应用”,更加强调数据。

简而言之,量化交易主要分为量化和交易两部分。量化是对策略盈利能力和风险的管控,量化方法千差万别,各种思路都有,理论上手动交易的只要能被抽象成规则,也是可以做量化的,所以量化和手动交易并不冲突,量化多了些手段而已。交易是通过自动化解放人自身,机器总比人反应快。

举个例子大家更容易理解。我们可以把投资活动想象成汽车工厂里装配汽车的过程。量化投资,就好比一间全自动装配车间,所有的装配工作都是由机器完成的。而人为投资,则好比传统化的汽车装配车间,绝大部分的装配工作还是需要工人来完成。

值得指出的是,不管是量化投资,还是人为投资,最终都还是需要人进行控制和决策,只是它们的决策层不同。

在机器组装汽车这个例子中,传送带上的汽车组装工作,完全由机器完成,没有人的决策参与。但是在那个层级之上,规定机器手臂做哪些事情,按照什么顺序做,哪个机器完成哪部分工作,还是需要人来决定。

类似的,在量化投资体系中,具体到选哪个股票买,哪个股票卖,买卖多少量,这些决策都由电脑程序做出。但是作为一个量化投资经理,他需要在顶层做出更多的决策。比如在目前的环境下,用哪套系统来选股?如何在不同的系统之间分配风险资金,或者进行切换?在交易系统中加入哪些因子,或者去除哪些因子,等等。

二、量化投资的价值

相较于传统人工投资,量化投资具有三大核心价值。

1、效率提升百倍。量化交易可以利用大量历史数据检验策略,效率提升百倍。当我们想验证交易策略的时候,一个基本的想法是想知道它在历史上表现如何,这往往需要大量的历史数据与计算量,量化交易做一次回测可能几分钟就可以得到结果了,相比于传统人工做法效率的提升是成百倍的,也不用花大量的时间进行一个个的复盘。

2、科学客观地衡量策略效果。例如一个关于某技术指标的策略,人工进行10个交易日的验证,效果都不错,但这就能说明这指标不错吗?不,10次太少了,你需要更多的验证,比如1000个交易日,人工验证不可行,量化交易则又快又准。而且量化交易还可以利用数学与统计学自动给出客观的结果,比如年化收益率、最大回撤率、夏普比率等。

3、全市场实时捕捉交易机会。量化交易可以利用计算机全市场实时盯盘,不错过任何交易机会,实现盈利,同时也可做不同品种的对比分析,寻找最适合交易的品种。而人工来验算这个工作量就相对较大,同时准确度可能很低。并且量化交易可以利用计算机对海量数据分析得到常人难以发现的盈利机会,而且有些机会只有量化交易才能利用,比如发现市场价差机会,或大量单同时管理等,可能只借用量化来执行才显示其价值。

三、量化投资的特征

简单来讲,量化交易主要有五大核心特征:

1、纪律性。坚决执行模型的运行结果进行决策,减少因投资者情绪波动而导致的非理性的投资决策,既可以克制人性中贪婪、侥幸心理等弱点,也可以克服认知偏差。

2、系统性。具体表现为“三多”,一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量等多个角度;三是多数据,即对海量数据的处理。

3、及时性。信息技术的使用,使得量化策略的执行在速度上远远优于手动交易。例如:计算机可以在毫秒之内捕捉到一些微小的套利机会,并执行套利逻辑,但手动交易无法做到这么快速及时。

4、套利思想。量化投资通过全面、系统性地扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

5、概率取胜。一是量化投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

案例说明

一个有效的量化交易程序通常需要市场价格满足一些具体的要求,才能做出有效的交易决策、常见的量化策略条件会如下表述:

当资产ABC的价格上穿了30天移动平均线时买入;

当资产ABC的价格下穿了30天移动平均线时卖出。

上面只是一个非常简单的算法举例,锡安泉在这里并不建议大家直接使用这个交易策略,但在我看来这是对量化交易最好的一个释义。至少大家明白量化交易背后,都是需要有这样明确的条件设置,才能确保程序能有效的运行。

如上图所示,根据上述策略设定,每当资产ABC的价格上穿均线时,量化程序就会自动买入;反之,当价格下穿均线时,程序会自动卖出。如你所见,这套量化程序的交易结果似乎无利可图,但这不是我们举例的重点,上面的这个例子只是为了告诉大家所谓的量化交易的基础模型是什么样子的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值