很多人把量化投资称为「黑箱」,为它赋予了深不可测的形象。
“黑箱”一词最早流行可能是因为一部1915年的科幻电影,一个叫桑福德·奎斯特的犯罪学家发明了一种可以帮助自己破案的机器,称为黑箱。更有趣的是,电影制片商环球影城通过悬赏的方式鼓励大家去破解黑箱的秘密。
量化投资是否真的如此神秘呢?今天我们就来揭开量化的神秘面纱。
1、量化交易系统的典型结构
揭开量化投资的面纱,就需要先来了解一下量化交易系统的典型结构。交易系统包含3个模块,而其中的核心就是阿尔法模型。
2、黑箱利器:阿尔法模型
预测,尤其是预测未来,是极为困难的一件事。 ——尼尔斯·玻尔
阿尔法模型(Alpha)旨在用数量化建模的方法捕捉投资者所考虑交易的金融产品的短期错误定价,并通过投资组合的方式在充分考虑风险收益比的情况下来进行一揽子金融品种的投资,主要目的是为了博取投资绝对收益率。
国内的量化投资大概在2010年随着股指期货的出炉开始兴起,Alpha模型的研发也经历了快速发展和迅速迭代的进程。随着市场风格和金融衍生品的不断发展和演化,国君资管的量化团队也不断进取、精益求精,实战中的Alpha量化模型也经历了不断打磨和升级的过程:
阿尔法模型的策略可以分为两类:
a:理论驱动型策略
绝大多数量化策略都是理论驱动型的。理论驱动型策略通过观察市场行为,寻找可能用来解释这些行为的普适性经济学理论,再依据市场数据来检验该理论是否可以用于预测未来的市场行为。
b:数据驱动型策略
数据驱动型的量化策略相比于理论驱动型策略,更依靠的是工程和数学统计的逻辑,通过大数据挖掘、传统机器学习和人工智能神经网络等方法,捕捉与标的资产价格走势相关的特征来进行统计套利。
3、用量化策略追求阿尔法
阿尔法模型策略使用机器学习和人工智能算法,市场适应性更强。
通过Alpha量化策略选股,寻找有效因子、用模型合成信号、通过分散投资来降低风险、通过概率来博取稳定的超额收益。
那么如何应用量化策略来追求Alpha收益呢?
若用量化Alpha选股策略来构建股票多头组合,那么投资人获得的收益既包含Alpha收益也包含Beta收益。这种情况下,投资人对于指数未来市场走势(beta风险)的判断最为关键。而Alpha量化对冲策略,则是在此基础上通过做空相应的股指期货品种而达到剥离Beta风险的作用,相比于股票多头组合,其跟市场走势的相关性很小,博取相对于指数稳定的超额收益的能力是衡量一个Alpha模型优劣的最主要标准。
一个有竞争力的Alpha量化选股模型会尽量全面地捕捉股票多维度的数据,通过全面覆盖不同频率的价量数据、财务数据、分析师报告和其它另类数据等全方位数据来充分刻画每一只股票的特征,而在因子合成层面则可以通过先进的算法从高噪音和冗余度较高的大数据中根据市场风格的不断变化,抽取有效的因子并给股票的预期收益率进行综合打分,并通过风险模型和投资组合管理模型构建股票投资组合。一个有生命力的模型需要不断挖掘并扩充股票的有效因子并不断提升模型的自适应性。
Alpha量化模型以概率取胜,是系统化程度较高的一种投资方式,运气成分相对较小。通过不断挖掘股票的有效因子并强化模型对因子的识别能力,是量化模型获取阿尔法的秘诀。
揭开量化阿尔法模型策略的神秘面纱,发现量化投资的魅力。
量化投资先驱西蒙斯曾说:“那些著名的投资人究竟如何投资的过程其实对谁来说都是个谜。我们量化基金的投资方式和任何一个凭借基本面分析判断进行投资的方式相比并不是更为神秘。很大程度上来讲,我们的投资方式倒更为清晰透明,因为这些都是能够在电脑上编程处理的。对我们来说,量化投资并不神秘。”
向智者学习 ,才能像智者一样做事。 ——马可·奥勒留《沉思录》
---------------------
推荐阅读: