MNA由来

MNA方程的由来

由KVL得到方程u=ATvu=A^Tvu=ATv

通过选取基准电压(参考节点),对于n个节点,m条边,可以得到关联矩阵M,再由KVL可以得到m条边的电压差向量,从而利用基准电压可以得到.

截屏2024-03-19 20.25.34

由KCL得到Ai=0Ai=0Ai=0

利用关联矩阵可以得到Mi=0Mi=0Mi=0,利用M矩阵的性质可得.

截屏2024-03-19 20.43.23

STA

我们使用线性电阻网络,即线性电阻器、独立电源、线性受控源

  • 至于什么是线性受控源:受控源的受控量与控制量之比称为受控源的参数,又称为控制系数。μ、r、g、β分别为四种受控源的参数。其中,μ和β是量纲一的系数,μ称为电压放大系数,β称为电流放大系数;r称为转移电阻,其单位为欧姆(Ω);g称为转移电导,单位为西门子(S)。当它们为常数时,受控源是线性的

这些元器件的方程只能是如下方程中的一个:

截屏2024-03-19 20.45.57

从而Element equations可以写成Zi+Yu=sZi+Yu=sZi+Yu=s,其中s是m×1m\times 1m×1的已知向量.

从而求解系统为:

截屏2024-03-19 20.47.34

这就是STA,稀疏表格分析.

Nodal Analysis

首先我们假设电路网络中,没有电压源(既没有独立电压源又没有受控电压源),对于这样的电路,我们可以由Zi+Yu=s简化得到i=Yu+s.

在i=Yu+s两侧利用Ai=0和u=ATvu=A^Tvu=ATv可以得到AYATv=−AsAYA^Tv=-AsAYATv=As.

这个式子就是NA的方程的形式,它描述了在n-1个节点上的电压是如何确定的,称G=AYATG=AYA^TG=AYAT为nodal admittance matrix.

Modified Nodal Analysis

MNA与NA的核心区别是:对于一部分元器件,保留了它们的电流变量.

我们把不保留电流的器件称为group 1,其他的称为group 2.由Zi-Yu=s可得:

截屏2024-03-19 22.27.18

group 1中的器件只包括电阻、独立电流源、压控电流源、流控电流源:其对应方程为:

截屏2024-03-19 22.28.42

group 2中的元器件对应方程:

截屏2024-03-19 22.37.48

截屏2024-03-19 22.42.19

**逻辑:**STA保留了所有的电流,但是有些电流是可以代替的,从而有了NA,NA把所有的电流都去掉了,只留下了电压作为变量,这样导致理想电压源的方程式不能取决于其电流。但是MNA只消除了大部分电流变量

电容和电感是线性的吗?

电容的定律是:
i=cdvdt i=c\frac{dv}{dt} i=cdtdv
推导如下,其中i=dQdti=\frac{dQ}{dt}i=dtdQ.

截屏2024-03-19 22.01.00

电感的定律是:
v=−Ldidt v=-L\frac{di}{dt} v=Ldtdi
如果把dv/dt,di/dt都看作自变量,那么这就是一条直线。所以电阻,电容,电感都是线性元件

一个非常经典的非线性元件就是二极管

截屏2024-03-19 22.15.10

截屏2024-03-19 22.17.46

  • 信号通过一个元器件后,信号的波形没有变化,比如电阻,电容;反之就称为非线性器件,比如二极管。
  • 当信号通过一个电路后,信号的波形没有改变,就称之为线性电路.
### MNA矩阵生成原理 修改后的节点分析法(Modified Nodal Analysis, MNA)是一种用于电路建模和仿真的方法,广泛应用于电子设计自动化工具中。其核心目标是通过建立一组线性方程来描述电路的行为。 #### 原理概述 MNA 方法的核心在于构建两个主要部分:一个是 **节点电压向量** 和另一个是 **支路电流向量** 的组合表示形式。最终的目标是以矩阵的形式表达整个系统的状态变量关系[^1]。 对于任意给定的网络结构,可以将其抽象成如下标准形式: \[ [A][X]=[Z] \] 其中, - \([A]\) 是系数矩阵,包含了所有元件参数以及拓扑连接信息; - \([X]\) 表示未知数列阵,通常由独立节点电压与受控源控制变量构成; - \([Z]\) 则代表激励项集合,比如电源输入等外部条件的影响。 具体来说,在实际操作过程中需要完成以下几个方面的处理工作: 1. 节点导纳贡献计算并填入相应位置形成子块 \(G\)。 2. 对于理想运算放大器这样的特殊组件,则需引入额外约束条件反映虚短特性从而增加辅助方程式数量匹配自由度需求。 3. 处理各种类型的受控源及其关联影响路径映射至增益因子区域 \(B,C,D\) 中去实现完整的相互作用捕捉能力提升模型精度水平达到预期效果满足工程应用场合下的性能指标要求[^2]。 以下是 Python 实现的一个简单例子展示如何自动生成基本的小型电阻电感串联RL回路对应的修正节点分析框架基础版本代码片段供参考学习之用: ```python import numpy as np def create_mna_matrix(): G = np.array([[0]]) # Conductance matrix placeholder initialization. B = C = D = Z = None # Example setup for an RL circuit with one loop and two nodes (excluding ground). R_value = float(input("Enter the value of resistor R in ohms: ")) L_value = float(input("Enter the value of inductor L in henries: ")) s = complex(0, 1e9) # Assume a high-frequency AC analysis using Laplace 's' variable. Y_R = 1 / R_value # Admittance due to resistance. Y_L = 1 / (s * L_value) # Admittance equivalent from inductance at frequency domain point chosen above. G[0, 0] += Y_R + Y_L # Summing up admittances connected directly between node pair under consideration here... print("\nGenerated MNA Matrix Components:") print(f"G:\n{G}") create_mna_matrix() ``` 此脚本仅作为教学用途演示了最简单的场景下怎样开始搭建属于自己的个性化定制化解决方案流程的一部分而已,并未考虑更复杂的实际情况中的诸多细节因素如非线性动态变化过程等等情况下的适应调整机制等问题探讨深入研究方向留待后续进一步探索发现新的可能性空间拓展边界不断前进发展下去吧!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值