降阶系统总结

降阶系统总结

线性系统

{ E d x ( t ) d t = A x ( t ) + B u ( t ) , y ( t ) = C x ( t ) . \begin{cases} E\frac{dx(t)}{dt}=Ax(t)+Bu(t),\\ y(t)=Cx(t). \end{cases} {Edtdx(t)=Ax(t)+Bu(t),y(t)=Cx(t).

其中 E , A ∈ R n × n , B ∈ R n × p , C ∈ R m × n , x ( t ) ∈ R n , u ( t ) ∈ R p , y ( t ) ∈ R m E,A\in\mathbb{R}^{n\times n},B\in\mathbb{R}^{n\times p},C\in\mathbb{R}^{m\times n},x(t)\in\mathbb{R}^n,u(t)\in \mathbb{R}^p,y(t)\in \mathbb{R}^m E,ARn×n,BRn×p,CRm×n,x(t)Rn,u(t)Rp,y(t)Rm.

系统 ( 1 ) (1) (1)的传递函数为
H ( s ) = C ( s E − A ) − 1 B . H(s)=C(sE-A)^{-1}B. H(s)=C(sEA)1B.

渐进波形估计模型降阶方法(AWE)

AWE就是对传递函数 H ( s ) H(s) H(s) P a d e Pade Pade有理逼近得到 H ^ ( s ) \hat{H}(s) H^(s),再对 H ^ ( s ) \hat{H}(s) H^(s)做逆Laplace变换,得到传递函数 H ( s ) H(s) H(s)在时间域上的近似响应 h ^ ( t ) \hat{h}(t) h^(t),从而输出波形近似 y ^ ( t ) = h ^ ( t ) ∗ u ( t ) \hat{y}(t)=\hat{h}(t)*u(t) y^(t)=h^(t)u(t).

缺点:数值不稳定.

Krylov子空间模型降阶方法

构造 c o l s p a n ( V ) = K r ( A − 1 E , A − 1 B ) colspan(V)= K_r(A^{-1}E,A^{-1}B) colspan(V)=Kr(A1E,A1B),利用 V V V可得系统 ( 1 ) (1) (1)的降阶系统:
{ E ~ d x ~ ( t ) d t = A ~ x ~ ( t ) + B ~ u ( t ) , y ~ ( t ) = C ~ x ~ ( t ) . \begin{cases} \tilde{E}\frac{d\tilde{x}(t)}{dt}=\tilde{A}\tilde{x}(t)+\tilde{B}u(t),\\ \tilde{y}(t)=\tilde{C}\tilde{x}(t). \end{cases} {E~dtdx~(t)=A~x~(t)+B~u(t),y~(t)=C~x~(t).
其中, E ~ = V T E V , A ~ = V T A V , B ~ = V T B , C ~ = C T V , x ~ ( t ) ∈ R r \tilde{E}=V^TEV,\tilde{A}=V^TAV,\tilde{B}=V^TB,\tilde{C}=C^TV,\tilde{x}(t)\in\mathbb{R}^r E~=VTEV,A~=VTAV,B~=VTB,C~=CTV,x~(t)Rr.

则系统 ( 3 ) (3) (3)即为系统 ( 1 ) (1) (1) r r r阶降阶系统,并且降阶系统 ( 3 ) (3) (3)的传递函数匹配原始系统 ( 1 ) (1) (1)传递函数的前 r r r​​阶矩.

缺点:如果我们希望通过匹配传递函数的更多矩来获得更精确的降阶系统,我们就需要在 K r K_r Kr中添加更多的矩向量,那么降阶系统的阶数r将会相应增加。此外,如果线性系统是多输入的系统,那么 u ( t ) u(t) u(t)是向量而不是标量函数,从而 B B B相应的就会有许多列,这样的话 K r K_r Kr就会有许多列,也即 V V V会有许多列。这就可能导致降阶系统的阶数 r r r不够小,甚至接近原始系统的阶数 n n n.

对于形式特殊的矩阵有PRIMA算法和SPRIM算法.

平衡阶段模型降阶方法

优点:平衡阶段方法可以很容易得到降阶系统与原始系统之间的误差关系.

在对系统进行截断降阶之前,需要对原始系统做平衡变换.首先给出平衡变换的定义:

截屏2024-03-24 15.29.44

系统Hankel奇异值的定义是:一个线性时不变系统的Hankel奇异值是系统的可控Gram矩阵P和可观Gram矩阵Q的乘积的特征值的平方根,即
σ i = λ i ( P Q ) , i = 1 , 2 , ⋯   , n . \sigma_i=\sqrt{\lambda_i(PQ)},i=1,2,\cdots,n. σi=λi(PQ) ,i=1,2,,n.
接下去让我们考虑平衡截断的算法,考虑如下最小实现系统:
{ d x ( t ) d t = A x ( t ) + B u ( t ) , y ( t ) = C x ( t ) + D u ( t ) . \begin{cases} \frac{dx(t)}{dt}=Ax(t)+Bu(t),\\ y(t)=Cx(t)+Du(t). \end{cases} {dtdx(t)=Ax(t)+Bu(t),y(t)=Cx(t)+Du(t).
系统 ( 5 ) (5) (5)经平衡变换T作用后的平衡系统为:
{ d x ^ ( t ) d t = A ^ x ^ ( t ) + B ^ u ( t ) , y ^ ( t ) = C ^ x ^ ( t ) + D ^ u ( t ) . \begin{cases} \frac{d\hat{x}(t)}{dt}=\hat{A}\hat{x}(t)+\hat{B}u(t),\\ \hat{y}(t)=\hat{C}\hat{x}(t)+\hat{D}u(t). \end{cases} {dtdx^(t)=A^x^(t)+B^u(t),y^(t)=C^x^(t)+D^u(t).
其中 A ^ = T − 1 A T , B ^ = T − 1 B , C ^ = C T , D ^ = D . \hat{A}=T^{-1}AT,\hat{B}=T^{-1}B,\hat{C}=CT,\hat{D}=D. A^=T1AT,B^=T1B,C^=CT,D^=D.

除此之外,还有
P ^ = T − 1 P T − T = Q ^ = T T Q T = Σ = d i a g { σ 1 I n 1 , σ 2 I n 2 , ⋯   , σ k I n k } \hat{P}=T^{-1}PT^{-T}=\hat{Q}=T^TQT=\Sigma=diag\{\sigma_1I_{n_1},\sigma_2I_{n_2},\cdots,\sigma_kI_{n_k}\} P^=T1PTT=Q^=TTQT=Σ=diag{σ1In1,σ2In2,,σkInk}
其中, σ i \sigma_i σi按降序排列, ∑ i = 1 k n i = n \sum_{i=1}^kn_i=n i=1kni=n,这里 n i n_i ni σ i \sigma_i σi​的重数.

以下为截断Hankel奇异值得到 q q q阶降阶模型的过程:

截屏2024-03-24 15.49.58

非线性系统

非线性系统具有以下形式:
{ d x ( t ) d t = f ( x ( t ) ) + b u ( t ) , y = c T x ( t ) . \begin{cases} \frac{dx(t)}{dt}=f(x(t))+bu(t),\\ y=c^Tx(t). \end{cases} {dtdx(t)=f(x(t))+bu(t),y=cTx(t).
其中 f ( x ( t ) ) f(x(t)) f(x(t))是关于 x ( t ) x(t) x(t)的非线性函数.

我们可以用如下非线性电路作为示例:

截屏2024-03-24 16.31.09

The quadratic reduction method(二次规约法)

假设 f ( x ) f(x) f(x)足够光滑而且其 T a y l o r Taylor Taylor展开如下:

截屏2024-03-24 16.54.37

其中 D f ( 0 ) D_f(0) Df(0) f f f在0处的Jacobian矩阵, H f ( 0 ) H_f(0) Hf(0)是Hessen tensor.

利用 f ( x ) f(x) f(x) T a y l o r Taylor Taylor展开可以得到如下的二次非线性系统,它是系统 ( 8 ) (8) (8)的近似:

截屏2024-03-24 17.04.11

投影矩阵 V V V由线性系统的 K r y l o v Krylov Krylov子空间方法启发得到:
s p a n c o l u m n V = s p a n { A − 1 b , A − 2 b , ⋯   , A − q b } spancolumn{V}=span\{A^{-1}b,A^{-2}b,\cdots,A^{-q}b\} spancolumnV=span{A1b,A2b,,Aqb}
从而降阶系统是( x = V z x=Vz x=Vz):
{ d z d t = A ^ z + A ^ V T A − 1 z T V T W V z + A ^ V T b 1 u ( t ) , y = c T V z . \begin{cases} \frac{dz} {dt}=\hat{A}z+\hat{A}V^TA^{-1}z^TV^TWVz+\hat{A}V^Tb_1u(t),\\ y=c^TVz. \end{cases} {dtdz=A^z+A^VTA1zTVTWVz+A^VTb1u(t),y=cTVz.
其中 A ^ = ( V T A − 1 V ) − 1 \hat{A}=(V^TA^{-1}V)^{-1} A^=(VTA1V)1.

二次规约法虽然比如下传统线性系统近似更精确,但它在形成正交投影矩阵V的时候不包含 f f f的非线性部分.

截屏2024-03-24 17.18.51

Bilinearazation reduction method(双线性化降阶方法)

假设 f ( x ) f(x) f(x)可以写成如下多元级数表示的形式:

截屏2024-03-24 22.21.24

其中 ϕ j \phi_j ϕj​是j元线性函数.

通常情况下, ϕ j \phi_j ϕj有不同的选择方式.以下根据Kronecker乘积给出一种具体表达式.记:

截屏2024-03-24 22.23.33

对非线性函数 f ( x ) f(x) f(x)进行多元函数展开,得:

截屏2024-03-24 22.24.44

将上式代入系统的状态方程,就有:

我们使用前两项逼近 f ( x ) f(x) f(x)​,即:

截屏2024-03-24 17.25.13

由以下可知Kronecker乘积满足的等式:
d x ⊗ x d t = x ˙ ⊗ x + x ⊗ x ˙ = [ A 1 x + A 2 x ⊗ x + b u ] ⊗ x + x ⊗ [ A 1 x + A 2 x ⊗ x + b u ] = [ ( A 1 ⊗ I ) ( x ⊗ x ) + ⋯   ] + ( b ⊗ I ) x u + [ ( I ⊗ A 1 ) ( x ⊗ x ) + ⋯   ] + ( I ⊗ b ) x u = [ ( A 1 ⊗ I + I ⊗ A 1 ) ( x ⊗ x ) + ⋯   ] + [ ( b ⊗ I ) + ( I ⊗ b ) ] x u . \begin{aligned} \frac{dx\otimes x}{dt} &= \dot{x}\otimes x+x\otimes\dot{x}\\ &=[A_1x+A_2x\otimes x+bu]\otimes x+x\otimes[A_1x+A_2x\otimes x+bu]\\ &=[(A_1\otimes I)(x\otimes x)+\cdots]+(b\otimes I)xu+[(I\otimes A_1)(x\otimes x)+\cdots]+(I\otimes b)xu\\ &=[(A_1\otimes I+I\otimes A_1)(x\otimes x)+\cdots]+[(b\otimes I)+(I\otimes b)]xu. \end{aligned} dtdxx=x˙x+xx˙=[A1x+A2xx+bu]x+x[A1x+A2xx+bu]=[(A1I)(xx)+]+(bI)xu+[(IA1)(xx)+]+(Ib)xu=[(A1I+IA1)(xx)+]+[(bI)+(Ib)]xu.
若记:

截屏2024-03-24 17.26.04

则可得如下双线性系统,它是对原始系统 ( 8 ) (8) (8)的近似:

截屏2024-03-24 17.48.46

考虑如下单输入单输出系统:

截屏2024-03-24 22.31.23

以下给出上述双线性系统的Volterra级数输入输出表达形式.上述系统的输入变量 u ( t ) u(t) u(t)和输出变量 y ( t ) y(t) y(t)的关系可以写成下列Volterra级数形式:

截屏2024-03-24 22.35.25

其中 h k h_k hk具有如下的形式:截屏2024-03-24 22.35.46

已知 e A t e^{At} eAt的Laplace变换为 L { e A t } = ( s I − A ) − 1 \mathcal{L}\{e^{At}\}=(sI-A)^{-1} L{eAt}=(sIA)1.

从而 h k ( t 1 , t 2 , ⋯   , t k ) h_k(t_1,t_2,\cdots,t_k) hk(t1,t2,,tk)的多元Laplace变换具有形式:

截屏2024-03-24 22.41.59

我们称 H k ( s 1 , s 2 , ⋯   , s k ) H_k(s_1,s_2,\cdots,s_k) Hk(s1,s2,,sk)为双线性系统的第k阶传递函数.

同时我们化简 H k H_k Hk

截屏2024-03-24 22.47.37

其中 m k ( l 1 , l 2 , ⋯   , l k ) m_k(l_1,l_2,\cdots,l_k) mk(l1,l2,,lk) H k ( s 1 , s 2 , ⋯   , s k ) H_k(s_1,s_2,\cdots,s_k) Hk(s1,s2,,sk)的矩,并且有:

截屏2024-03-24 22.49.46

由各阶传递函数的矩,我们构造多重Krylov子空间.记第一重Krylov子空间为 c o l s p a n V ( 1 ) = K q 1 ( A − 1 ; A − 1 b ) colspan{V^{(1)}}=K_{q1}(A^{-1};A^{-1}b) colspanV(1)=Kq1(A1;A1b).同时,对于 k = 2 , 3 , ⋯   , r k=2,3,\cdots,r k=2,3,,r,则第 k k k重krylov子空间可以写为:

截屏2024-03-24 22.53.41

综合这些矩阵 { V ( k ) } \{V^{(k)}\} {V(k)},应用QR分解,可以得到标准列正交矩阵V,它满足:

截屏2024-03-24 22.55.29

利用V对原始双线性系统进行降阶.

假设矩阵A非奇异,则原始系统可以转化为:

截屏2024-03-24 22.56.50

利用变换矩阵V,就可以构造如下系统:

截屏2024-03-24 22.57.25

其中 x ~ ( t ) ∈ R q \tilde{x}(t)\in\mathbb{R}^q x~(t)Rq.再对上述系统的状态方程两端左乘 V T V^T VT,并且注意到 V T V = I q V^TV=I_q VTV=Iq,就可以得到如下降阶系统:

截屏2024-03-24 22.59.44

其中 A ~ = ( V T A − 1 V ) − 1 \tilde{A}=(V^TA^{-1}V)^{-1} A~=(VTA1V)1 N ~ = A ~ V T A − 1 N V \tilde{N}=\tilde{A}V^TA^{-1}NV N~=A~VTA1NV b ~ = A ~ V T A − 1 b \tilde{b}=\tilde{A}V^TA^{-1}b b~=A~VTA1b c ~ = V T c \tilde{c}=V^Tc c~=VTc.

至此,部分总结了线性与非线性系统的降阶方法.

  • 7
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值