迁移学习是一种机器学习技术,通过将在一个任务上学到的知识迁移到另一个相关任务上,以提升目标任务的性能。在自然语言处理(NLP)领域,迁移学习已经取得了显著的成果,并被广泛应用于各种任务,包括文本分类、情感分析、命名实体识别等。
一种常见的迁移学习方法是使用预训练的语言模型。预训练语言模型通过在大规模文本数据上进行训练,学习到了丰富的语言表示。这些预训练的语言模型可以被用作下游任务的基础模型,通过微调(fine-tuning)来适应特定的任务。微调过程中,基础模型的参数会根据目标任务的训练数据进行更新,以提高模型在目标任务上的性能。
下面以文本分类任务为例,介绍迁移学习在NLP中的应用。
首先,我们需要准备训练数据。假设我们有一个大规模的文本数据集作为预训练数据,以及一个相对较小的标注数据集用于目标任务的训练。
# 导入所需库
import torch
import torch.nn as nn
impor