这是andrew等人2005年的论文,并不新,我看他不是为了学习文本分类,而是为了看他是如何在这个特定任务上使用迁移学习的,因为最近在做迁移学习,但是应用方向不同,迁移学习也是一个比较大的方向,包含多种实现方法,但是我觉得难点是在formulation上,所以以这篇论文为范例,看他的理论推导和迁移学习的结合
传统线性文本分类的原理:利用相关
线性文本分类算法的工作原理:计算测试文本向量和一个参数向量的内积inner product。这个参数向量是由训练集数据的一些简单的闭式函数g(称为从数据到参数的映射,mapping from statistics to parameters,也叫做参数函数)决定的。文本分类的很多研究都是在努力去识别更好的参数函数g。本文提出了一个算法从相关的分类问题中自动学习这个参数函数。
测试文本向量和一个参数向量的内积:
θ k 1 , θ k 2 , ⋯ , θ k n \theta_{k1}, \theta_{k2}, \cdots, \theta_{kn} θk1,θ