把迁移学习用于文本分类(Andrew Ng)

在这里插入图片描述
这是andrew等人2005年的论文,并不新,我看他不是为了学习文本分类,而是为了看他是如何在这个特定任务上使用迁移学习的,因为最近在做迁移学习,但是应用方向不同,迁移学习也是一个比较大的方向,包含多种实现方法,但是我觉得难点是在formulation上,所以以这篇论文为范例,看他的理论推导和迁移学习的结合

传统线性文本分类的原理:利用相关

线性文本分类算法的工作原理:计算测试文本向量和一个参数向量的内积inner product。这个参数向量是由训练集数据的一些简单的闭式函数g(称为从数据到参数的映射,mapping from statistics to parameters,也叫做参数函数)决定的。文本分类的很多研究都是在努力去识别更好的参数函数g。本文提出了一个算法从相关的分类问题中自动学习这个参数函数。

测试文本向量和一个参数向量的内积:
在这里插入图片描述
θ k 1 , θ k 2 , ⋯   , θ k n \theta_{k1}, \theta_{k2}, \cdots, \theta_{kn} θk1,θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值