基于AlexNet的人脸表情识别_JAFFE

AlexNet 是基于 CNN 结构的神经网络模型,由 ALex Hinton 等研究者共 同发明,曾于 2012 年的 ILSVRC 图像识别大赛上荣膺最佳表现 。在 ImageNet 数据集上, AlexNet 的性能超过了所有的传统机器学习模型,开启了 深度学习在计算机视觉领域中的应用。
本篇文章将基于AlexNet利用JAFFE数据集进行训练,完成人脸表情识别任务。
首先来看看AlexNet的模型结构

可以看到其实就是一堆的CNN的堆砌,但是效果就是不错
具体的参数可见代码
import torch
import torch.nn as nn

class AlexNet(nn.Module):
    def __init__(self, num_classes=7):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(96, 256, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(256, 348, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(348, 348, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(348, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )

        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))

        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

以上就是模型结构了,接下来我们来看下我们用于训练和测试的数据集

JAFFE(Japanese Female Facial Expression)是一个经典的面部表情识别数据集,广泛用于情感计算和计算机视觉领域的研究。它包含了日本女性在不同表情下的面部图像,是研究面部表情识别的常用基准数据集之一。

  1. 样本数量

    • JAFFE 数据集包含 213 张灰度图像

    • 这些图像来自 10 位日本女性,每位女性有 7 种基本表情

  2. 表情类别

    • 7 种基本表情类别分别是:

      1. Anger(生气)

      2. Disgust(厌恶)

      3. Fear(恐惧)

      4. Happy(高兴)

      5. Sad(悲伤)

      6. Surprise(惊讶)

      7. Neutral(中性)

  3. 图像格式

    • 图像为灰度图,分辨率为 256x256 像素。

    • 每张图像以 .tiff 格式存储。

  4. 标注信息

    • 每张图像都有对应的表情标签,方便用于监督学习任务。

首先来讨论下图片的预处理
 
为了适应别的训练集,所以在预处理部分先将图像转为灰度,然后为了加强对比度使用直方图均衡化,然后为了适应模型的输入,重新扩展为RGB三通道图片,最后为了适应AlexNet模型输入,对图像中心裁剪 227*227,同时要对图像进行标准化。
接下来就是一些训练的参数的确定,损失函数我们使用交叉熵损失函数,优化器使用Adam
epochs = 200  lr = 0.001
代码如下:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader, random_split
import os
from OriginAlexNet import AlexNet

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

import cv2
import numpy as np
from PIL import Image


# 定义图像预处理方法
def preprocess_image(image):
    # 1. 将图像转为灰度
    image_gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)

    # 2. 进行直方图均衡化
    image_eq = cv2.equalizeHist(image_gray)

    # 3. 转换回三通道,复制灰度值到R, G, B通道
    image_eq_rgb = cv2.cvtColor(image_eq, cv2.COLOR_GRAY2RGB)

    # 将图像转换为PIL格式
    return Image.fromarray(image_eq_rgb)


# 图像预处理管道
transform = transforms.Compose([
    transforms.Resize(256),  # 图像调整为 256*256
    transforms.CenterCrop(227),  # 中心裁剪 227*227
    transforms.Lambda(lambda x: preprocess_image(x)),  # 自定义预处理方法
    transforms.ToTensor(),  # 转为Tensor
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  # 标准化
])

# 加载数据集
dataset_path = "../jaffe"
full_dataset = datasets.ImageFolder(root=dataset_path, transform=transform)

# 划分训练集和验证集 (85-15)
train_size = int(0.85 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])

# 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

# 初始化模型
model = AlexNet(num_classes=7).to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss().to(device)  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练参数
num_epochs = 200
best_acc = 0.0

# 训练循环
for epoch in range(num_epochs):
    # 训练阶段
    model.train()
    running_loss = 0.0
    for images, labels in train_loader:
        images = images.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item() * images.size(0)

    epoch_loss = running_loss / len(train_dataset)

    # 验证阶段
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in val_loader:
            images = images.to(device)
            labels = labels.to(device)

            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    acc = 100 * correct / total

    print(f"Epoch [{epoch + 1}/{num_epochs}] "
          f"Train Loss: {epoch_loss:.4f} "
          f"Val Acc: {acc:.2f}%")

    # 保存最佳模型
    if acc > best_acc:
        best_acc = acc
        torch.save(model.state_dict(), "OriginAleNet_JAFFE.pth")

print(f"Training complete. Best validation accuracy: {best_acc:.2f}%")

最好的准确率在72.73%  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值