Pytorch神经网络

概述

神经网络可以通过 torch.nn 包来构建。它是基于自动梯度 (autograd)来定义一些模型。一个 nn.Module 包括层和一个方法 forward(input), 它会返回输出(output)。
例如,看一个数字图片识别的网络:
在这里插入图片描述
这是一个简单的前馈神经网络,它接收输入,让输入一个接着一个的通过一些层,最后给出输出。
一个典型的神经网络训练过程包括以下几点:

  1. 定义一个包含可训练参数的神经网络
  2. 迭代整个输入
  3. 通过神经网络处理输入
  4. 计算损失(loss)
  5. 反向传播梯度到神经网络的参数
  6. 更新网络的参数,典型的用一个简单的更新方法:weight = weight – learning_rate *gradient

定义神经网络

import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

net = Net()
print(net)

输出网络结构:

Net(
 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
 (fc1): Linear(in_features=400, out_features=120, bias=True)
 (fc2): Linear(in_features=120, out_features=84, bias=True)
 (fc3): Linear(in_features=84, out_features=10, bias=True)
)

一个模型可训练的参数可以通过调用 net.parameters() 返回:

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight.size

输出结果:

10
torch.Size([6, 1, 5, 5])

尝试随机生成一个 32×32 的输入。注意:期望的输入维度是 32×32 。

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

输出结果:

tensor([[ 0.0435,  0.1076, -0.0439, -0.0265,  0.0589, -0.0782, -0.0122,  0.0537,
          0.1129, -0.0193]], grad_fn=<AddmmBackward>)

把所有参数梯度缓存器置零,用随机的梯度来反向传播:

net.zero_grad()
out.backward(torch.randn(1, 10))

下面为通过损失函数计算损失值:
损失函数
一个损失函数需要一对输入:模型输出和目标,然后计算一个值来评估输出距离目标有多远。有一些不同的损失函数在 nn 包中。一个简单的损失函数就是 nn.MSELoss ,作用为计算均方误差。例如:

input = torch.randn(1, 1, 32, 32)
output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)

输出结果:

tensor(0.8701, grad_fn=<MseLossBackward>)

如果跟随损失到反向传播路径,可以使用它的 .grad_fn 属性,你将会看到一个这样的计算图:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
当我们调用 loss.backward(),整个图都会微分,而且所有的在图中的requires_grad=True 的张量将会让他们的 grad 张量累计梯度。
为了演示,我们将跟随以下步骤来反向传播:

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

输出结果:

<MseLossBackward object at 0x000001894527AC50>
<AddmmBackward object at 0x00000189467CB438>
<AccumulateGrad object at 0x000001894527AC50>

为了实现反向传播损失,我们所有需要做的事情仅仅是使用 loss.backward()。这需要清空现存的梯度,要不然将会和现存的梯度累计到一起。

现在我们调用 loss.backward() ,然后看一下 con1 的偏置项在反向传播之前和之后的变化。

net.zero_grad()     # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward:')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward:')
print(net.conv1.bias.grad)

输出结果:

conv1.bias.grad before backward:
None
conv1.bias.grad after backward:
tensor([-0.0008, -0.0062,  0.0153,  0.0012, -0.0203,  0.0130])

最后为更新神经网络参数,最简单的更新规则就是随机梯度下降:weight = weight - learning_rate * gradient

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

如果你想使用不同的更新规则,类似于 SGD, Nesterov-SGD, Adam, RMSProp, 等,可以使用 torch.optim 实现。

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

全部代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

net = Net()
input = torch.randn(1, 1, 32, 32)
# out = net(input)
# print(out)
# net.zero_grad()
# out.backward(torch.randn(1, 10))

input = torch.randn(1, 1, 32, 32)
# output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()#损失函数

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

注意:
torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 input.unsqueeze(0)将batch_size设为1。例如 nn.Conv2d 输入必须是4维的,形如 n S a m p l e s × n C h a n n e l s × H e i g h t × W i d t h nSamples \times nChannels \times Height \times Width nSamples×nChannels×Height×Width。可将nSample设为1,即 1 × n C h a n n e l s × H e i g h t × W i d t h 1 \times nChannels \times Height \times Width 1×nChannels×Height×Width

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值