已知:S_n= 1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}Sn=1+21+31+…+n1。显然对于任意一个整数 kk,当 nn 足够大的时候,S_n>kSn>k。
现给出一个整数 kk,要求计算出一个最小的 nn,使得 S_n>kSn>k。
输入 1
输出 2
#include<stdio.h>
int main()
{
double sum = 0.0,n=1.0,i =1.0;
int k;
scanf("%d",&k);
for( i =1.0;;i++)
{
sum += n/i;
if(sum > k)
{
break;
}
}
printf("%.0lf",i);
return 0;
}