巴塞尔问题(Basel problem)的多种解法——怎么计算$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$ ?...

(PS:本文会不断更新)

$\newcommand\R{\operatorname{Res}}$

如何计算$\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$? 这个问题是在1644年由意大利数学家蒙哥利(Pietro Mengoli)提出的,而大数学家欧拉于1735年第一次解决了这个问题。他得出著名的结果:
\[\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}\]

解决这个问题的方法在近代不断涌现。这里我从各处摘抄到一些方法,列举在此,仅供大家参考。

如有错误,请向我指出,谢谢!(PS:最近发现忻州师范学院某网页抄了我博客后不给Reference,希望大家明辨是非

首先,我们需要知道这个问题的等价形式,将这个数列除以4,我们自然得到$\sum_{k=1}^{\infty} \frac{1}{(2k)^2}=\frac{\pi^2}{24}$,从而我们只需证明
\[\sum_{k=1}^{\infty}\frac{1}{(2k-1)^2}=\frac{\pi^2}{8}\]
而以下某些证明会用到这一点。

证明1:欧拉的证明

欧拉的证明是十分聪明的。他只是将幂级数同有限的多项式联系到了一起,就得到了答案。首先注意到
\[\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\]
从而
\[\frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots\]
但是$\frac{\sin{x}}{x}$的根集,为
\[x=n\cdot \pi,\mbox{ }(n = \pm1, \pm2, \pm3, \dots).\]
故我们可以假定
\begin{align}
\frac{\sin(x)}{x} & {} =
\left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \cdots \notag\\
& {} = \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right)\left(1 - \frac{x^2}{9\pi^2}\right) \notag\cdots.
\end{align}
(PS:欧拉似乎没有证明这个无穷积,直到100年后魏尔斯特拉斯得到了他著名的“魏尔斯特拉斯分解定理”(Weierstrass factorization theorem,详情可见wiki相应条目)。利用这个方法得到函数时要特别小心,我以前看到的一个反例就可以说明这个问题)

从而我们对这个无穷乘积的$x^2$项进行研究,可以知道
\[-\left(\frac{1}{\pi^2} + \frac{1}{4\pi^2} + \frac{1}{9\pi^2} + \cdots \right) =
-\frac{1}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}.\]
所以
\[-\frac{1}{6} =
-\frac{1}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}.\]
这样就得到了答案。

:欧拉给出过严谨的证明,但是由于他的第一个证明太广为人知,所以有时候会认为他没给出真正的证明。不过贴吧里的 tq唐乾 吧友提醒了我,实际上,欧拉有他真正的证明。是通过如下方式:首先令$N$为奇数

$$z^n-a^n=(z-1)\prod_{k=1}^{(n-1)/2}(z^2-2az\cos{\frac{2k\pi}{n}}+a^2)$$
令$z=1+x/N,a=1-x/N$,且n=N,有
\begin{align*}\left(1+\frac{x}N\right)^N-\left(1+\frac{x}N\right)^N &=\frac{2x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值