【FLINK】Flink 1.10 Run 命令详解

对于刚接触flink的小伙伴,很多都不太理解flink的参数命令,我也是,这里我记录一下,尽量通俗易懂

装了flink 之后,要是不太记得参数命令可以直接敲命令,大部分直接看后面的翻译就能理解

flink run --help

 

Syntax: run [OPTIONS] <jar-file> <arguments>  
  "run" action options:description理解
-c,--class <classname> Class with the program entry point
"main()" method). Only needed if the
AR file does not specify the class in
its manifest.
运行一个jar包的时候,没有指定jar包入口时,需要指定运行哪一个mainclass
eg: -c com.test.StreamingJob
-C,--classpath <url>Adds a URL to each user code
classloader  on all nodes in the
cluster. The paths must specify a
protocol (e.g. file://) and be
accessible on all nodes (e.g. by means
of a NFS share). You can use this
option multiple times for specifying
more than one URL. The protocol must
be supported by the {@link java.net.URLClassLoader}.
添加一个URL文件能够给集群中的所有节点都可以访问的到,URL的形式可以是file://...,指定classpath路径       
eg:flink -C  /usr/local/flink/examples/streaming/SocketWindowWordCount.jar
-d,--detachedIf present,runs the job in detached mode客户端提交作业的时候断开,session会话也会断开,加上这个参数后,会继续保持会话
eg: flink run -d
-n,--allowNonRestoredState

Allow to skip savepoint state that cannot 

be restored. You need to allow this if you removed an 

operator from your program that was part of the program 

when the savepoint was triggered.

跳过无法恢复的savepoint数据
eg: flink run -n
-p,--parallelism <parallelism>

The parallelism with which to run the program. Optional flag to 

override the default value specified in the configuration.

设置每个任务的并行度,默认是1,消费上游的消息慢的话可以调大并行值
eg: flink run -p 5
-py,--python <pythonFile>

Python script with the program entry point. 

The dependent resources can be configured 

with the `--pyFiles` option.

针对python脚本。指定脚本路径
eg: flink run -py /usr/local/python/test.py
-pyarch,--pyArchives <arg> 

Add python archive files for job. The archive files 

will be extracted to the 

working directory of python UDF worker. Currently 

only zip-format is supported. For each archive file,

 a target directory 

be specified. If the target directory name

 is specified, the 

archive file will be extracted to a name can

 directory with the 

specified name. Otherwise, the archive file

 will be extracted to a directory 

with the same name of the archive file.

 The files uploaded via this option 

are accessible via relative path. '#' could be 

used as the separator of the archive

 file path and the target directory name. 

Comma (',') could be used as the separator to

 specify multiple archive files. This option 

can be used to upload the virtual environment,

 the data files used in Python UDF (e.g.: --pyArchives 

file:///tmp/py37.zip,file:///tmp/data. zip#data --pyExecutable py37.zip/py37/bin/python). 

The data files could be accessed in Python UDF, 

e.g.: f = open('data/data.txt', 'r').

指定一个压缩文件供python 函数使用,目前仅支持zip文件
e.g.: --pyArchives file:///tmp/py37.zip,file:///tmp/data. zip#data --pyExecutable py37.zip/py37/bin/python
-pyexec,--pyExecutable <arg> 

Specify the path of the python interpreter used to 

execute the python UDF worker (e.g.: 

--pyExecutable /usr/local/bin/python3). 

The python UDF worker depends on 

Python 3.5+, 

Apache Beam (version == 2.15.0), 

Pip (version >= 7.1.0) and 

SetupTools (version >= 37.0.0). Please

 ensure that the specified environment 

meets the above requirements.

flink run -m  localhost:8081  -pyarch venv.zip -pyexec venv.zip/venv/bin/python3  -py test_split_label.py
-pyfs,--pyFiles <pythonFiles> 

Attach custom python files for job. These 

files will be 

added to the PYTHONPATH of both the 

local client and the 

remote python UDF worker. The standard

 python resource 

file suffixes such as .py/.egg/.zip or directory are

 all supported. 

Comma (',') could be used as the separator

 to specify multiple 

files (e.g.: --pyFiles file:///tmp/myresource.zip,

hdfs:///$na menode_address/myresource2.zip).

eg:-pyFiles file:///tmp/myresource.zip
-pym,--pyModule <pythonModule>

Python module with the program entry point. 

This option must be used in conjunction with `--pyFiles`.

需要结合pyFiles使用
-pyreq,--pyRequirements <arg> 

Specify a requirements.txt file which defines 

the third-party dependencies. These dependencies 

will be installed and added to the 

PYTHONPATH of the python 

UDF worker. A directory which 

contains the installation packages 

of these dependencies could be 

specified optionally. Use '#' as 

the separator if the optional parameter exists (e.g.: --pyRequirements

 file:///tmp/requirements.txt#file:///t mp/cached_dir).

eg:--pyRequirements file:///tmp/requirements.txt
-s,--fromSavepoint <savepointPath>

Path to a savepoint to restore the job 

from (for example hdfs:///flink/savepoint-1537).

读取保存状态的文件恢复之前的状态计算  
 eg: flink run -s hdfs:///flink/savepoint-1537
-sae,--shutdownOnAttachedExit 

If the job is submitted in attached mode, perform 

a best-effort cluster shutdown when the CLI is

 terminated abruptly, e.g., in response to a user

 interrupt, such as typing Ctrl + C.

 
Options for executor mode:  
-D <property=value>Generic configuration options for
execution/deployment and for the configured executor.
The available options can be found at
https://ci.apache.org/projects/flink/flink-docs-stabl
e/ops/config.html
动态属性
Options for yarn-cluster mode:  
-d,--detachedIf present, runs the job in detached mode客户端提交作业的时候断开,session会话也会断开,加上这个参数后,会继续保持会话
eg: flink run -d
-m,--jobmanager <arg>Address of the JobManager (master) to
which to connect. Use this flag to
connect to a different JobManager than
the one specified in the
configuration.
eg:flink run -m yarn-cluster
-yat,--yarnapplicationType <arg>Set a custom application type for the
application on YARN
设置yarn应用的类型
-yD <property=value> use value for given property使用给定属性的值
-yd,--yarndetachedIf present, runs the job in detached
mode (deprecated; use non-YARN
specific option instead)
已弃用
-yh,--yarnhelpHelp for the Yarn session CLIyarn help命令
eg: flink run -yh
-yid,--yarnapplicationId <arg>Attach to running YARN sessionyarn-session模式下 关联yid
-yj,--yarnjar <arg>Path to Flink jar filejar文件路径
eg: flink run -yj /xxx/WordCount.jar
-yjm,--yarnjobManagerMemory <arg>Memory for JobManager Container with
optional unit (default: MB)
配置给JobManager 内存大小 默认MB
eg: flink run -yjm 2048
-ynl,--yarnnodeLabel <arg> Specify YARN node label for the YARN
application
给yarn 应用指定yarn 节点标签
-ynm,--yarnname <arg>Set a custom name for the application
on YARN
设置名称
eg: flink run -ynm WordCount
-yq,--yarnqueryDisplay available YARN resources
(memory, cores)
查询出yarn里面可用的资源,内存 核数
-yqu,--yarnqueue <arg>Specify YARN queue指定yarn队列
-ys,--yarnslots <arg>Number of slots per TaskManager指定每个TM的slots数
-yt,--yarnship <arg>Ship files in the specified directory
(t for transfer)
指定一个传输文件
-ytm,--yarntaskManagerMemory <arg>Memory per TaskManager Container with
optional unit (default: MB)
给每一个TaskManager Container 分配内存大小
-yz,--yarnzookeeperNamespace <arg>Namespace to create the Zookeeper
sub-paths for high availability mode
创建ha的zk子路径的命名空间
-z,--zookeeperNamespace <arg> Namespace to create the Zookeeper
sub-paths for high availability mode
创建ha的zk子路径的命名空间
 Options for default mode:  
-m,--jobmanager <arg> Address of the JobManager (master) to which
to connect. Use this flag to connect to a
different JobManager than the one specified
in the configuration.
eg:flink run -m localhost:6123
eg:flink run -m yarn-cluster
-z,--zookeeperNamespace <arg>Namespace to create the Zookeeper sub-paths
for high availability mode
创建ha的zk子路径的命名空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zsigner

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值