目标检测和跟踪是计算机视觉领域中重要的任务,广泛应用于许多行业领域。为了训练和评估目标检测和跟踪算法,研究人员和开发者依赖于高质量的数据集。在本文中,我们将介绍来自不同行业领域的50多个对象检测数据集,这些数据集可用于训练和测试目标检测和跟踪模型。
-
COCO 数据集(Microsoft)
COCO(Common Objects in Context)数据集是一个广泛使用的目标检测和分割数据集。它包含超过330,000个图像,共80个不同的对象类别。COCO数据集提供了标注框和分割掩码,可用于训练和评估目标检测和分割算法。# 示例代码 import torch from torchvision.datasets import CocoDetection # 加载COCO数据集 coco_train_dataset = CocoDetection