目标检测与跟踪:来自多个行业领域的50多个数据集

68 篇文章 8 订阅 ¥59.90 ¥99.00
本文介绍了多个用于目标检测和跟踪的计算机视觉数据集,包括COCO、ImageNet、KITTI和Open Images,这些数据集在不同行业领域提供了丰富的标注,有助于训练和评估算法,促进技术进步。
摘要由CSDN通过智能技术生成

目标检测和跟踪是计算机视觉领域中重要的任务,广泛应用于许多行业领域。为了训练和评估目标检测和跟踪算法,研究人员和开发者依赖于高质量的数据集。在本文中,我们将介绍来自不同行业领域的50多个对象检测数据集,这些数据集可用于训练和测试目标检测和跟踪模型。

  1. COCO 数据集(Microsoft)
    COCO(Common Objects in Context)数据集是一个广泛使用的目标检测和分割数据集。它包含超过330,000个图像,共80个不同的对象类别。COCO数据集提供了标注框和分割掩码,可用于训练和评估目标检测和分割算法。

    # 示例代码
    import torch
    from torchvision.datasets import CocoDetection
    
    # 加载COCO数据集
    coco_train_dataset = CocoDetection
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值