理想低通滤波器(对傅里叶变换和离散傅里叶变换的区别的粗浅认识)

本文深入剖析了理想低通滤波器中傅里叶变换的应用,讨论了从连续到离散的转换过程,以及像素变化率与滤波效果的关系,揭示了估算时使用连续傅里叶变换的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理想低通滤波器,振铃现象是因为sinc函数,而sinc函数是因为例4.1的简单函数的傅里叶变换得到的。经过我的计算,简单函数的傅里叶反变换也得到sinc函数。这里的频率域滤波器因为是二个值的,所以类似简单函数,反变换之后得到的空间域滤波器是sinc函数,但是事实不只是如此,因为简单函数需要的是连续的,这里是离散的点,实际上需要简单函数乘以取样函数,就是冲激串,单位间隔为1,再进行反变换,我观察了冲激串定义公式4.2-14和傅里叶变换公式4.2.5小节的上面内容,发现冲激串反变换和变换得到的公式是一样的。所以理想低通滤波器的反变换h(x)=sinc\bigotimesF-1(S\DeltaT)=\sum_{m=-\infty }^{+\infty } \sum_{n=-\infty }^{+\infty }sinc(x-m/\DeltaT, y-n/\DeltaT),但是这也不对。因为图像是PxQ个点列,冲激串范围改成PxQ就可以了。具体的计算过程我给不出来,书上这样说:

实际上计算过程非常的复杂,我还没想通,但是肯定不是书上写的这么简单。我在说一下,图4.43是瞎画的,和一边的解释对应不上,画错了。

我现在给出一维具体的计算过程:

首先模版在频率域上是M的点列。在中心处M/2的位置有白色点列范围为[M/2-D0, M/2+D0]。

函数为H(u)=1, u∈[M/2-D0, M/2+D0]。H(u)=0, u∈[0, M] - [M/2-D0, M/2+D0], 同时u∈Z。

同时把这个函数考虑为周期函数。

现在考虑如何从连续函数得到这个离散函数。先考虑在区间[0,M]的函数,因为后面可以使用中心化。

H0(u)=1, u∈[-M/2,M/2];others H0(u)=0。注意连续函数的傅里叶变换不是周期函数,但是离散函数是。

设s\DeltaT表示冲激串,这里的\DeltaT是什么呢?实际上并不知道电信号的时间间隔,那就不管,反正在这里没有影响。

H0(u)*s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值