核 心 : \color{red}{核心:} 核心:
补 码 运 算 , 补 码 原 码 的 转 换 \color{red}{ 补码运算,补码原码的转换} 补码运算,补码原码的转换
举例:(单精度32位 float)
0.75 + ( - 65.25 ) = -64.5
0.75 —— 0 01111110 10…0
-65.25——1 10000101 000001010…0
对阶之后:(可以参考这篇文章:浮点数对阶)
0.75 ——0 10000101 0000001100…0 ( 尾 数 中 多 出 来 的 1 是 隐 藏 位 中 的 1 ) \color{green}{ (尾数中多出来的1是隐藏位中的1)} (尾数中多出来的1是隐藏位中的1)
然后进行尾数运算
这里会给尾数加上一个符号位
-65.25—— (1)1000001010…0
p s : 括 号 里 的 1 是 f l o a t 的 符 号 位 , 括 号 外 的 那 个 1 是 − 65.25 的 隐 藏 位 ) \color{green}{ ps:括号里的1是float的符号位,括号外的那个1是-65.25的隐藏位)} ps:括号里的1是float的符号位,括号外的那个1是−65.25的隐藏位)
0.75 ——(0)0000001100…0
在完成尾数的加法操作前,再来看一个例子:
假设现在有
-1 ——1001(和尾数一样,以原码的形式表示,第一个1为符号位)
1——0001
如果要做加法的话,不能直接加,而是要把原码转化成补码再进行运算
(正数的补码就是本身,负数的补码取反加一)
即对-1:
取反,1110(符号位不变)
加一:1111
然后就可以进行加操作了~
结果为:(1)0000 括号里的1是溢出的,所以最终答案为0
回到尾数运算
负数-62.25 转补码:
取反:(1)011111010111…1 ( 注 意 : 浮 点 数 的 尾 数 后 面 还 有 很 多 位 的 , 括 号 里 的 1 为 符 号 位 ) \color{green}{ (注意:浮点数的尾数后面还有很多位的,括号里的1为符号位)} (注意:浮点数的尾数后面还有很多位的,括号里的1为符号位)
加一:(1)011111011000…0
然后相加:
得到:(1)0111111100…0
注 意 : 这 个 是 补 码 , 而 浮 点 数 的 尾 数 是 以 原 码 的 形 式 存 在 的 , 故 要 把 补 码 转 成 原 码 \color{green}{ 注意:这个是补码,而浮点数的尾数是以原码的形式存在的,故要把补码转成原码} 注意:这个是补码,而浮点数的尾数是以原码的形式存在的,故要把补码转成原码
减1: (1)0111111011…1
取反:(1)1000000100…0 (符号位不变)
然后把尾数放入浮点数 ( 这 时 , 符 号 位 放 回 f l o a t 的 符 号 位 , 隐 藏 位 再 次 隐 藏 起 来 ) \color{green}{ (这时,符号位放回float的符号位,隐藏位再次隐藏起来)} (这时,符号位放回float的符号位,隐藏位再次隐藏起来)
1 10000101 000000100…0
即 -64.5=0.75+(-65.25)