链接:https://ac.nowcoder.com/acm/contest/317/E
来源:牛客网
题目描述
小a正在玩一款即时战略游戏,现在他要用航空母舰对敌方阵地进行轰炸
地方阵地可以看做是n×mn×m的矩形
航空母舰总共会派出qq架飞机。
飞机有两种,第一种飞机会轰炸以(xi,yi)(xi,yi)为中心,对角线长为lili的正菱形(也就是两条对角线分别于xx轴 yy轴平行的正方形),而第二种飞机只会轰炸正菱形的上半部分(包括第xixi行)
(具体看样例解释)
现在小a想知道所有格子被轰炸次数的异或和
注意:不保证被轰炸的格子一定在矩形范围内,若越界请忽略
输入描述:
第一行三个整数n,m,q分别表示矩阵的长/宽/询问次数 接下来q行,每行四个整数opt,x,y,l表示飞机类型,轰炸的坐标,以及对角线长度 保证l为奇数!
输出描述:
一个整数,表示所有格子被轰炸次数的异或和
示例1
输入
4 5 4 1 2 2 1 1 3 3 5 1 3 2 3 2 2 4 3
输出
2
说明
每次的操作矩阵即操作后的矩阵的值如下
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 2 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
0 3 1 1 0
2 2 2 1 1
0 2 1 1 0
0 0 1 1 0
0 3 2 2 1
2 2 2 1 1
0 2 1 1 0
最后把所有元素异或后为2
备注:
1⩽n,m⩽1000
1⩽q⩽5∗10^5 1⩽q⩽5∗10^5
保证opt=1/2,1⩽x,y,l⩽max(N,M)
读入文件过大,请使用较快的读入方式
题目大意:
给出一个n*m的矩形,然后有两个操作.
1操作,对一个给出的菱形,对菱形范围内的东西进行+1。
2操作,对一个上半菱形的区域,进行+1操作。
最后求矩形内各个数的异或和。
思路:
这个题目的操作都是对一个范围整体+1,让我们很容易想起树状数组的区间操作。但是树状数组是一个规则的矩形,或者一维的操作。这里是一个菱形。所以具体操作是不一样。
在矩形中,我们在四个角上进行++--,然后利用差分的性质,就解决了区间更新,但是在这里,想破脑汁,也没想出怎么进行++--。因为矩形的差分是横着或者竖着的,最后的求和非常容易,但是这里不一样。最后看了题解豁然大悟,原来差分还可以动态的来,本行的差分数组使用完了,还可以把差分数组下传,继续在下一层继续起到作用,这是神奇的操作。
想来,这真是一道关于差分的好题。
那么差分数组如何进行标记,标记如何动态下传呢,就看一下图。
图中的绿色是要进行区间操作的菱形。红色圆圈是打的+1操作,蓝色圆圈是打的-1操作。它们是成对出现的,每个红色圆圈都有一个蓝色圆圈来消除它。 它们的标记传递方向是那个紫色的箭头。所以有四种传递方向。就要有四个标记数组。这样传递的话就可以按行遍历,边遍历边下传。
由于可能出现越界的情况,但是标记还是需要处理的。所以就要加个偏移量来进行处理,但是最后计算,只是算原来的矩形。
具体打标记和下传标记的操作看代码。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 3e3+100,L=1e3;
const int maxm = 1e5 + 100;
const ll INF=1e16;
int a[maxn][maxn],b[maxn][maxn],c[maxn][maxn],d[maxn][maxn];
int n, m,q;
void up(int x,int y,int l)
{
a[x-l/2][y]++;b[x-l/2][y+1]--;
a[x+1][y-l/2-1]--;b[x+1][y+l/2+2]++;
}
void down(int x,int y,int l)
{
c[x+1][y-l/2+1]++;d[x+1][y+l/2]--;
c[x+l/2+1][y+1]--;d[x+l/2+1][y]++;
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
for(int i=0,flag,x,y,l;i<q;i++)
{
scanf("%d%d%d%d",&flag,&x,&y,&l);
x+=L;y+=L;
up(x,y,l);
if(flag==1)down(x,y,l);
}
int res=0;
for(int i=0;i<n+2*L;i++)
{
int ans=0;
for(int j=0;j<m+2*L;j++)
{
ans+=a[i][j]+b[i][j]+c[i][j]+d[i][j];
if(i>=L+1&&i<=L+n&&j>=L+1&&j<=L+m)res^=ans;
a[i+1][j-1]+=a[i][j];
b[i+1][j+1]+=b[i][j];
c[i+1][j+1]+=c[i][j];
d[i+1][j-1]+=d[i][j];
}
}
printf("%d\n",res);
return 0;
}