小a的轰炸游戏(动态差分-好题)

链接:https://ac.nowcoder.com/acm/contest/317/E
来源:牛客网
 

题目描述

小a正在玩一款即时战略游戏,现在他要用航空母舰对敌方阵地进行轰炸
地方阵地可以看做是n×mn×m的矩形
航空母舰总共会派出qq架飞机。
飞机有两种,第一种飞机会轰炸以(xi,yi)(xi,yi)为中心,对角线长为lili的正菱形(也就是两条对角线分别于xx轴 yy轴平行的正方形),而第二种飞机只会轰炸正菱形的上半部分(包括第xixi行)
(具体看样例解释)
现在小a想知道所有格子被轰炸次数的异或和
注意:不保证被轰炸的格子一定在矩形范围内,若越界请忽略

输入描述:

第一行三个整数n,m,q分别表示矩阵的长/宽/询问次数
接下来q行,每行四个整数opt,x,y,l表示飞机类型,轰炸的坐标,以及对角线长度
保证l为奇数!

输出描述:

一个整数,表示所有格子被轰炸次数的异或和

示例1

输入

 

4 5 4
1 2 2 1
1 3 3 5
1 3 2 3
2 2 4 3

输出

 

2

说明

 

每次的操作矩阵即操作后的矩阵的值如下

0 0 0 0 0

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 1 0 0
0 2 1 1 0
1 1 1 1 1
0 1 1 1 0

0 0 1 0 0
0 3 1 1 0
2 2 2 1 1
0 2 1 1 0

0 0 1 1 0
0 3 2 2 1
2 2 2 1 1
0 2 1 1 0
最后把所有元素异或后为2

备注:

1⩽n,m⩽1000 

1⩽q⩽5∗10^5  1⩽q⩽5∗10^5

保证opt=1/2,1⩽x,y,l⩽max(N,M)

读入文件过大,请使用较快的读入方式

 

题目大意:

给出一个n*m的矩形,然后有两个操作.

1操作,对一个给出的菱形,对菱形范围内的东西进行+1。

2操作,对一个上半菱形的区域,进行+1操作。

最后求矩形内各个数的异或和。

思路:

这个题目的操作都是对一个范围整体+1,让我们很容易想起树状数组的区间操作。但是树状数组是一个规则的矩形,或者一维的操作。这里是一个菱形。所以具体操作是不一样。

在矩形中,我们在四个角上进行++--,然后利用差分的性质,就解决了区间更新,但是在这里,想破脑汁,也没想出怎么进行++--。因为矩形的差分是横着或者竖着的,最后的求和非常容易,但是这里不一样。最后看了题解豁然大悟,原来差分还可以动态的来,本行的差分数组使用完了,还可以把差分数组下传,继续在下一层继续起到作用,这是神奇的操作。

想来,这真是一道关于差分的好题。

那么差分数组如何进行标记,标记如何动态下传呢,就看一下图。

图中的绿色是要进行区间操作的菱形。红色圆圈是打的+1操作,蓝色圆圈是打的-1操作。它们是成对出现的,每个红色圆圈都有一个蓝色圆圈来消除它。 它们的标记传递方向是那个紫色的箭头。所以有四种传递方向。就要有四个标记数组。这样传递的话就可以按行遍历,边遍历边下传。

由于可能出现越界的情况,但是标记还是需要处理的。所以就要加个偏移量来进行处理,但是最后计算,只是算原来的矩形。

具体打标记和下传标记的操作看代码。

代码:

#include <bits/stdc++.h>

using namespace std;
#define ll long long
const int maxn = 3e3+100,L=1e3;
const int maxm = 1e5 + 100;
const ll INF=1e16;
int a[maxn][maxn],b[maxn][maxn],c[maxn][maxn],d[maxn][maxn];

int n, m,q;

void up(int x,int y,int l)
{
    a[x-l/2][y]++;b[x-l/2][y+1]--;
    a[x+1][y-l/2-1]--;b[x+1][y+l/2+2]++;
}

void down(int x,int y,int l)
{
    c[x+1][y-l/2+1]++;d[x+1][y+l/2]--;
    c[x+l/2+1][y+1]--;d[x+l/2+1][y]++;
}

int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i=0,flag,x,y,l;i<q;i++)
    {
        scanf("%d%d%d%d",&flag,&x,&y,&l);
        x+=L;y+=L;
        up(x,y,l);
        if(flag==1)down(x,y,l);
    }
    int res=0;
    for(int i=0;i<n+2*L;i++)
    {
        int ans=0;
        for(int j=0;j<m+2*L;j++)
        {
            ans+=a[i][j]+b[i][j]+c[i][j]+d[i][j];
            if(i>=L+1&&i<=L+n&&j>=L+1&&j<=L+m)res^=ans;
            a[i+1][j-1]+=a[i][j];
            b[i+1][j+1]+=b[i][j];
            c[i+1][j+1]+=c[i][j];
            d[i+1][j-1]+=d[i][j];
        }
    }
    printf("%d\n",res);
    return 0;
}

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值