c++高精度算法

题目:输入两个数A和B,计算A*A-B*B的值。

(要求A,B取-10^100到10^100)

此题无法使用long lonng进行解答,需要使用高精度算法存储才能解决。

高精度的存储是把每一位单独存储,且是倒序存储,数组num[1]是这个数的个位,num[2]是这个数的十位,以此类推;

算法

高精度加法:

#include <iostream>
#include <cstring>
using namespace std;
 
struct HugeInt{
	int len;
	int num[100001];
}; 
 
HugeInt a, b, w;        //w为结果 
char c[100001], d[100001];
 
void Scan_HugeInt() {   //读入两个大整数 
	cin >> c;
	cin >> d;
	a.len = strlen(c); //strlen求串长 
	b.len = strlen(d);
	for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0'; //逆序存储 
	for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
 
void Plus() {
	w.len = max(a.len, b.len);           //num每一位是0,长度取max不影响加法 
	for(int i=1; i<=w.len; i++) {
		w.num[i] += a.num[i] + b.num[i]; 
		w.num[i+1] += w.num[i] / 10;    //处理进位
		w.num[i] %= 10;                 //处理当前位 保证<10 
	}
	if(w.num[w.len + 1] != 0) w.len ++;  //加法最多有可能会多出一位 
}
 
int main() {
	Scan_HugeInt();
	Plus();
	for(int i=w.len; i>=1; i--) cout << w.num[i]; //倒序存储 倒序输出 
	cout << endl;
	return 0;
}

高精度减法:

#include <iostream>
#include <cstring>
using namespace std;
 
struct HugeInt {
	int len;
	int num[100001];
};
 
HugeInt a, b, w;         //w为结果
char c[100001], d[100001];
bool negative;           //负数标记 
 
void Scan_HugeInt() {    //读入两个大整数
	cin >> c;
	cin >> d;
	if((strlen(c) < strlen(d)) || (strlen(c) == strlen(d) && strcmp(c, d) < 0)) { //若被减数小 交换 记为负数 
		negative = true;
		swap(c, d);
	}
	a.len = strlen(c);
	b.len = strlen(d);
	for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0'; 
	for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
 
void Minus() {
	w.len = a.len;                //a更大 
	for(int i=1; i<=w.len; i++) {
		if(a.num[i] < b.num[i]) {  
			a.num[i+1] --;      //num[i+1]减成负数也不影响 
			a.num[i] += 10;     //借位 
		}
		w.num[i] += a.num[i] - b.num[i];
	}
	while(w.num[w.len] == 0 && (w.len != 1)) w.len --; //多余的不是个位的0去掉 
}
 
int main() {
	Scan_HugeInt();
	Minus();
	if(negative == true) cout << "-";             //负数加负号 
	for(int i=w.len; i>=1; i--) cout << w.num[i]; //倒序存储 倒序输出
	cout << endl;
	return 0;
}

高精度乘法:

#include <iostream>
#include <cstring>
using namespace std;
 
struct HugeInt {
	int len;
	int num[100001];
};
 
HugeInt a, b, w; 
char c[10001], d[10001];
 
void Scan_HugeInt() {    //读入两个大整数
	cin >> c;
	cin >> d;
	a.len = strlen(c);
	b.len = strlen(d);
	for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0';
	for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
 
void Multiply() {
	int x;              //处理每次进位的变量 
	for(int i=1; i<=a.len; i++) {      //a的第i位 
		x = 0;
		for(int j=1; j<=b.len; j++) { //b的第j位 
			w.num[i+j-1] += a.num[i] * b.num[j] + x; //用 +=:结果与上次乘的结果相加 
			x = w.num[i+j-1] / 10;
			w.num[i+j-1] %= 10;          //进位处理 
		} 
		w.num[i+b.len] = x;  //多出的最高位 
	}
	w.len = a.len + b.len;
	while(w.num[w.len] == 0 && (w.len != 1)) w.len --; //多余的0 
}
 
int main() {
	Scan_HugeInt();
	Multiply();
	for(int i=w.len; i>=1; i--) cout << w.num[i];
	cout << endl;
	return 0;
}

高精度除法:

除以低精度时:
 
Int1000 operator / (const int &b) { //除以低精
	if(*this < Int1000(b)) return Int1000(0);
	Int1000 ans;
	ans.len = len;
	int r = 0;
	for(int i=ans.len; i>=1; i--) {
		r = r * 10 + a[i];
		ans.a[i] = r / b;
		r %= b;
	}
	while(ans.len > 1 && !ans.a[ans.len]) ans.len --;
	return ans;
}
Int1000 operator / (Int1000 b) {
	if(*this < b) return Int1000(0);
	Int1000 ans; ans.len = len - b.len + 1;
	for(int i=ans.len; i>=1; i--) {
		for(int j=1; j<=9; j++) {
			ans.a[i] ++;
			if((*this) < (ans * b)) {
				ans.a[i] --;
				break;
			}
		}
	        if(ans.a[ans.len] == 0) ans.len --;
        }
	while(ans.len > 1 && !ans.a[ans.len]) ans.len --;
	return ans;
}
除以高精度时:
const int MAX_SIZE = 1010;
 
struct Int {
	int len, n[MAX_SIZE];
	void Set(int l) {
		len = l;
		for(int i = 1; i <= len; i ++) n[i] = 0;
	}
	Int(char *s) {
		len = strlen(s);
		for(int i = len - 1; ~i; i --) {
			if(s[i] <= '9' && s[i] >= '0') {
				len = i + 1;
				break;
			}
		}
		for(int i = len; i >= 1; i --) n[i] = s[len - i] - '0';
	}
	Int(long long x = 0) {
		len = 0;
		do {
			n[++ len] = x % 10;
			x /= 10;
		} while(x);
	}
	bool operator < (const Int b) {
		if(len != b.len) return len < b.len;
		for(int i = len; i; i --)
			if(n[i] != b.n[i]) return n[i] < b.n[i];
		return false;
	}
	Int operator + (const Int b) const {
		Int ans; ans.Set(max(len, b.len) + 1);
		for(int i = 1; i <= ans.len; i ++) {
			if(i <= len) ans.n[i] += n[i];
			if(i <= b.len) ans.n[i] += b.n[i];
			ans.n[i + 1] += ans.n[i] / 10;
			ans.n[i] %= 10;
		}
		while(!ans.n[ans.len] && ans.len > 1) ans.len --;
		return ans;
	}
	Int operator - (const Int b) {
		Int ans, a = *(this); ans.Set(len);
		for(int i = 1; i <= ans.len; i ++) {
			if(a.n[i] < b.n[i]) a.n[i + 1] --, a.n[i] += 10;
			ans.n[i] += a.n[i] - (i > b.len ? 0 : b.n[i]);
		}
		while(!ans.n[ans.len] && ans.len > 1) ans.len --;
		return ans;
	}
	Int operator * (Int b) {
		Int ans; ans.Set(len + b.len);
		for(int i = 1; i <= len; i ++) {
			for(int j = 1; j <= b.len; j ++) {
				ans.n[i + j - 1] += n[i] * b.n[j];
				ans.n[i + j] += ans.n[i + j - 1] / 10;
				ans.n[i + j - 1] %= 10;
			}
		}
		while(!ans.n[ans.len] && ans.len > 1) ans.len --;
		return ans;
	}
	Int operator / (const int &b) { //除以低精  
     	    if(*this < Int(b)) return Int(0LL);  
     	    Int ans; ans.len = len;  
     	    int r = 0;  
     	    for(int i = ans.len; i; i --) {  
     		r = r * 10 + n[i];  
     		ans.n[i] = r / b;  
          	r %= b;  
        }  
            while(ans.len > 1 && !ans.a[ans.len]) ans.len --;  
            return ans;  
        }  
	Int operator / (const Int b) {
		if((*this) < b) return Int(0LL);
		Int ans; ans.Set(len - b.len + 1);
		for(int i = ans.len; i; i --) {
			for(int j = 1; j <= 9; j ++) {
				ans.n[i] ++;
				if((*this) < (ans * b)) {
					ans.n[i] --;
					break;
				}
			}
		}
		while(ans.len > 1 && !ans.n[ans.len]) ans.len --;
		return ans;
	}
	void print() {
		for(int i = len; i; i --) 
			printf("%d", n[i]);
		printf("\n");
	}
};

解题:

#include <cstdio>
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
//char s1[105], s2[105];
string s1, s2;
int a[205], b[205], c[205], d[205];
void f(int big[], int sma[], int la, int lb)
{
    for (int i = 1; i <= la; i++)
    {
        if (big[i] < sma[i])
        {    
            big[i] += 10 ;
            big[i + 1] -= 1;
        }
        big[i] -= sma[i];
    }
    while (big[la] == 0&&la>1)la--;
    for (int i = la; i >= 1; i--)
        cout << big[i];
}
int main() {
    getline(cin, s1);
    getline(cin, s2);
    int lena = s1.length();
    int lenb = s2.length();
    if (s1[0] == '-') {

        for (int i = 1; i <= lena - 1; i++)
        {
            a[i] = s1[lena - i] - '0';
        }
        lena--;
    }
    else {
        for (int i = 1; i <= lena; i++)
        {
            a[i] = s1[lena - i] - '0';
        }
    }
    if (s2[0] == '-') {

        for (int i = 1; i <= lenb - 1; i++)
        {
            b[i] = s2[lenb - i] - '0';
        }
        lenb--;
    }
    else {
        for (int i = 1; i <= lenb; i++)
        {
            b[i] = s2[lenb - i] - '0';
        }
    }

    int lenc = lena + lena;
    for (int i = 1; i <= lena; i++)
        for (int j = 1; j <= lena; j++)
        {
            c[i + j - 1] += a[i] * a[j];
            c[i + j] += c[i + j - 1] / 10;
            c[i + j - 1] %= 10;

        }
    while (c[lenc] == 0)lenc--;


    int lend = lenb + lenb;
    for (int i = 1; i <= lenb; i++)
        for (int j = 1; j <= lenb; j++)
        {
            d[i + j - 1] += b[i] * b[j];
            d[i + j] += d[i + j - 1] / 10;
            d[i + j - 1] %= 10;

        }
    while (d[lend] == 0)lend--;

    // minus
    
    bool flag = false;    // true == "-";
    if (lenc < lend)flag = true;
    if (!flag) {
        if (lenc == lend) {
            while (lenc >= 1) {
                if (c[lenc] > d[lenc])
                {
                    break;
                }
                if (c[lenc] < d[lenc])
                {
                    flag = true;
                    break;
                }
                lenc--;
            }
        }
    }

    if (flag) {
        cout << "-";
        f(d, c, lend, lenc);
    }//需要符号
    else {
        f(c, d, lenc, lend);
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值