【R语言】ggplot中点的样式shape参数汇总

ggplot中点的样式展示:

library(ggplot2)

# 创建数据框
a<- data.frame(x = 0:25, y = 0:25)
# 创建散点图
ggplot(a, aes(x = x, y = y, shape = as.factor(y))) +
  geom_point(size = 4) +
  scale_shape_manual(values = 0:25) +
  labs(shape = "形状") +
  theme(legend.direction = "vertical",
        legend.position = "bottom",
        legend.key = element_rect(colour = "white", fill = "white"))

示例图如下:

<think>好的,用户现在想了解如何在Cherry Studio中加载本地数据集文件。我需要先回顾一下之前提供的引用内容。根据引用[1],用户需要在Cherry Studio文件夹下创建特定的目录,比如gas和xtjc,然后上传文件到这些文件夹中进行训练。引用[2]提到用户可能面临文件管理混乱的问题,所以需要清晰的步骤指导。 首先,用户的问题是如何加载本地数据集,所以需要分步骤说明。根据引用[1],准备工作包括创建文件夹,这可能是一个关键点。我需要明确说明创建目录的位置和命名规范,比如在Cherry Studio根目录下创建,并且每个数据集对应一个文件夹。 接下来是单个文件上传训练的步骤。引用[1]中提到了一次性文件训练和后续临时文件训练的区别,所以可能需要分别说明。但用户的问题更侧重于加载本地文件,所以重点放在如何将文件放入指定文件夹,然后通过命令行或界面启动训练。 另外,用户可能想知道如何验证数据集是否加载成功,所以需要提到检查训练日志或预览数据。还需要注意文件格式的支持,比如txt、pdf、csv等,但引用中没有具体提到,可能需要根据常见情况推测,或者建议用户查阅文档。 可能还需要提醒用户文件路径的正确性,避免常见错误,比如路径错误或文件格式不支持。此外,引用[2]提到文件管理的问题,建议用户合理命名文件,避免混乱,这也是一个有用的提示。 总结回答的结构应该是:准备工作(创建文件夹)、上传文件(复制到对应目录)、启动训练(命令行或界面)、验证加载,以及注意事项。需要确保每个步骤清晰,并且引用相关的引用内容,比如在创建文件夹时引用[1],在文件管理建议时引用[2]。 另外,用户可能需要生成相关问题,比如如何追加新数据、支持的格式、管理多个数据集,以及训练失败怎么办。这些问题需要根据步骤中的关键点来设计,帮助用户深入理解整个流程。</think>### Cherry Studio加载本地数据集文件的方法教程 在Cherry Studio中加载本地数据集文件,需按照以下步骤操作: --- #### **1. 创建数据集文件夹(准备工作)** - 在Cherry Studio的根目录下创建**独立文件夹**,例如: - `gas`文件夹:存放燃气行业数据集[^1] - `xtjc`文件夹:存放系统集成相关数据[^1] - 文件夹命名需简洁明确,避免使用《最终版》《V12》等模糊命名[^2] --- #### **2. 上传本地文件到指定目录** - **单个文件训练**:直接将文件(如`.txt`, `.csv`, `.pdf`)复制到目标文件夹内 示例路径: ```bash Cherry-Studio/gas/燃气销售数据_2023.csv ``` - **批量文件训练**:将同类型文件统一放入同一文件夹,保持结构清晰[^1] --- #### **3. 启动数据集加载** - **命令行方式**: 使用`train`命令指定文件夹路径: ```bash python train.py --dataset_path ./gas ``` - **界面操作**(如支持GUI): 在Cherry Studio的"数据集管理"界面选择对应文件夹并点击"开始训练" --- #### **4. 验证加载结果** - 检查训练日志输出`Training completed for dataset: gas` - 通过`preview`功能预览已加载数据样本 - 若需追加新文件,直接放入原文件夹后执行增量训练命令 --- #### **注意事项** 1. 文件路径需为**绝对路径**,避免相对路径导致的加载失败 2. 支持格式需参考官方文档(常见支持:文本/表格/PDF) 3. 复杂数据结构建议先进行预处理(如标准化命名、分块存储) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值