1.1 题目的主要研究内容
(1)工作的主要描述
通过卷积网络实现猫狗图像的识别。首先,在数据集中抽取训练集和测试集;其次,对图像进行预处理和特征提取,对图像数据进行图像增强,将图像从.jpg格式转化为RGB像素网格,再转化为像素张量;再次,搭建卷积神经网络模型;最后,使用模型进行训练,得到猫狗识别的准确率和二元交叉熵损失及其可视化图像,并对模型进行测试。
(2)系统流程图
1.2 题目研究的工作基础或实验条件
(1)系统:Windows 10
处理器:i7-7700HQ CPU @2.80GHz
(2)编程软件:Pycharm
版本:Python 3.7
1.3 数据集描述
数据集中共有25000张图片,其中猫狗图片各12500张,在数据集中抽取一部分作为训练集和测试集。训练集中猫狗图片各3000张,测试集猫狗图片各1000张。
1.4 特征提取过程描述
为了防止模型过拟合,采用图像增强的方法,利用ImageDataGenerator方法调整参数对图像进行增强。将所有图片重设尺寸大小为150*150大小,并使用 ImageDataGenerator 方法将本地图片.jpg格式转化成RGB像素网格,再转化成浮点张量上传到网络上,将像素值(介于0和255之间)重新缩放到[0,1]间隔。ImageDataGenerator参数介绍如下:
参数名 |
含义 |