Spark大数据处理学习笔记 2.2搭建Spark开发环境

本文是Spark大数据处理的学习笔记,主要涵盖了Spark开发环境的准备工作,包括安装配置Hadoop,以及Spark的三种部署模式:Standalone、Mesos和Yarn。接着详细介绍了如何搭建Spark单机版环境,包括下载、安装、配置Spark以及使用SparkPi计算Pi和Spark-Shell进行交互式数据分析。
摘要由CSDN通过智能技术生成

目录

一、Spark开发环境准备工作

二、了解Spark的部署模式 

 (一)Standalone模式

(二)Mesos模式 

 (三)Yarn模式

 三、搭建Spark单机版环境

(一)前提是安装配置好了JDK 

 (二)下载、安装与配置Spark

 1、下载Spark安装包

 2、将Spark安装包上传到虚拟机

 3、将Spark安装包解压到指定目录

 4、配置Spark环境变量

 (三)使用Spark单机版环境

1、使用SparkPi来计算Pi的值

 2、使用Scala版本Spark-Shell


一、Spark开发环境准备工作

  • 由于Spark仅仅是一种计算框架,不负责数据的存储和管理,因此,通常都会将Spark和Hadoop进行统一部署,由Hadoop中的HDFS、HBase等组件负责数据的存储管理,Spark负责数据计算。

  • 安装Spark集群前,需要安装Hadoop环境

二、了解Spark的部署模式 

 (一)Standalone模式

  • Standalone模式被称为集群单机模式。该模式下,Spark集群架构为主从模式,即一台Master节点与多台Slave节点,Slave节点启动的进程名称为Worker,存在单点故障的问题。

(二)Mesos模式 

  • Mesos模式被称为Spark on Mesos模式。Mesos是一款资源调度管理系统,为Spark提供服务,由于Spark与Mesos存在密切的关系,因此在设计Spark框架时充分考虑到对Mesos的集成。

 (三)Yarn模式

  • Yarn模式被称为Spark on Yarn模式,即把Spark作为一个客户端,将作业提交给Yarn服务。由于在生产环境中,很多时候都要与Hadoop使用同一个集群,因此采用Yarn来管理资源调度,可以提高资源利用率。

 三、搭建Spark单机版环境

(一)前提是安装配置好了JDK 

 查看JDK版本

 (二)下载、安装与配置Spark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值