机器学习与深度学习相关算法的学习

本人打算开始总结机器学习和深度学习的系列博客了。 以下是要总结的相关算法的内容了, 只是梗概, 后期会做调整的。

(1)Supervised Technique:

classifications:

--- K nearest neighbour(K 近邻)

        --- Naive Bayes

        --- Classification Trees: CART, ID3, C4.5

--- SVM, Kernels

        --- Boosting,  AdaBoost

prediction:

--- Logistic Regression, Linear Regression

--- Regression Trees

--- K-Nearest Neighbors(KNN)

(2) Unsupervised Techniques:

---clustering :K-means Clustering,  K-Medoids,  single link clustering, density based methods(DBSCAN),                               Hierarchical Methods, 

--- PCA

--- Association Rules, Apriori algorithm(关联规则挖掘, 亦可以归类到预测方面)

--- Collabrative Filering

---ICA

Deep Learning(参考自hugo larochelle的course):

      --- FeedForward Neural Network

      ---  Training Neural Network

      --- Conditional Random field

      --- Training conditional random field

      ---Restricted Boltzmann Machine(RBM)

      ---` Autoencoders

      --- Deep learning ---- DBN(deep belied net)

      ---  Sparse coding

      ---  CNN(convolutional neural network)

关于计算机视觉。

。。。。。。。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值