本人打算开始总结机器学习和深度学习的系列博客了。 以下是要总结的相关算法的内容了, 只是梗概, 后期会做调整的。
(1)Supervised Technique:
classifications:
--- K nearest neighbour(K 近邻)
--- Naive Bayes
--- Classification Trees: CART, ID3, C4.5
--- SVM, Kernels
--- Boosting, AdaBoost
prediction:
--- Logistic Regression, Linear Regression
--- Regression Trees
--- K-Nearest Neighbors(KNN)
(2) Unsupervised Techniques:
---clustering :K-means Clustering, K-Medoids, single link clustering, density based methods(DBSCAN), Hierarchical Methods,
--- PCA
--- Association Rules, Apriori algorithm(关联规则挖掘, 亦可以归类到预测方面)
--- Collabrative Filering
---ICA
Deep Learning(参考自hugo larochelle的course):
--- FeedForward Neural Network
--- Training Neural Network
--- Conditional Random field
--- Training conditional random field
---Restricted Boltzmann Machine(RBM)
---` Autoencoders
--- Deep learning ---- DBN(deep belied net)
--- Sparse coding
--- CNN(convolutional neural network)
关于计算机视觉。
。。。。。。。