Logistic regression---原理部分

本文深入探讨Logistic Regression,介绍了Sigmoid函数的性质及其在二分类问题中的应用。通过概率解释,阐述了模型的目标是找到最大化似然函数的参数。文章还讨论了两种优化算法,Stochastic Gradient Descent (SGD)和Newton's Method,用于求解最佳参数,并给出了相应的更新规则,同时提及L2正则化的应用。
摘要由CSDN通过智能技术生成

Logistic Regression是一种利用非线性函数即sigmoid function对样本进行分类常常是binary classification)。

我们假如X是一个n 维real-valued feature vector: , y 是样本对应的label, 要么为-1类, 要么是类0。 于是我们的分类函数(logistic function, 又称为sigmoid function):

其中g(z)如下:

权重对应的是第k个特征对应的权重。

g(z)就是logistic function, 或者sigmoid function, 对应图形如下:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值