深度学习入门指南——2021吴恩达学习笔记deeplearning.ai《深度学习专项课程》篇(已完结)

目录

1 前言:

2 吴恩达所有课程思维导图:

3 课程资料:

4 参考笔记及资源:

5 课程大纲:

6 第一课:神经网络与深度学习

7 第二课:改进神经网络:超参数调整、正则化和优化

8 第三课:构建机器学习项目

9 第四课:卷积神经网络

10 第五课:序列模型


1 前言:

由于本人在学习该门课程时已经具备了一些ML、DL方面的基础知识,因此为了避免记录冗余知识,节约时间,本文仅在前人笔记的基础上记录一些对本人而言较为重要的知识点(相当于查漏补缺吧,哈哈,大家可以选择性浏览);

且吴恩达老师的课程教学基于tensorflow,但学术界目前最常使用的还是pytorch(本人经常用的也是pytoch),不过还是简单写了一下课程练习,记录在每节课的实战演练部分,仅供参考。

注:本人在学习过程中借鉴了大量@fengdu78的笔记,非常感谢这位博主及其团队优质笔记的帮助,本人主要是在其基础上记录一些对我而言较为重要的知识点、延申性质的课程补充内容以及部分实战篇。

  1. 2017年八月初,吴恩达(Andrew Ng)在Coursera上推出了DeepLearning.ai的系列专项课程,该系列课程一共由5门课程构成;
  2. 本课程使用语言为Python;
  3. 本次课程使用的是tensorflow2;
  4. 神经网络部分是用TensorFlow实现的,现在主流使用的是pytorch,建议看完这个学会原理后,再去看看李沐老师(或者小土堆)的视频,学习用pytorch的代码实现。 

本人之前也记录过吴恩达老师机器学习课程的笔记,参见:

深度学习入门指南——2022吴恩达学习笔记Coursera《Machine Learning》篇

从宏观上来讲 DeepLearning.ai 理论化内容要弱一点,偏重实际应用,而之前的机器学习由于是面向斯坦福学生的课程,所以理论深度要深一点。 总体来说两门课程都很值得去刷刷,入门的话可以从DeepLearning.ai 的头三门课程开始,想补一补基础理论可以从机器学习课程开始。

2 吴恩达所有课程思维导图:

学习推荐!吴恩达 AI 课程及学习路线最全梳理-CSDN博客

本次课程我们学习的是第三个模块——deeplearning.ai《深度学习专项课程》

3 课程资料:

教学视频:(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibili

参考资料:吴恩达在Coursera深度学习课程上的所有作业/实验的更新版本

4 参考笔记及资源:

笔记:

深度学习笔记-目录 (ai-start.com)

Coursera吴恩达《深度学习》课程总结(全)_吴恩达深度学习 笔记-CSDN博客

【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录-CSDN博客

我的「吴恩达深度学习笔记」汇总帖(附 18 个代码实战项目) - 知乎

资源:

吴恩达在Coursera深度学习课程上的所有作业/实验的更新版本

吴恩达深度学习2021年空白作业

黄海广团队——deeplearning.ai(吴恩达老师的深度学习课程笔记及资源)

5 课程大纲:

6 第一课:神经网络与深度学习

第一课:神经网络与深度学习-CSDN博客

主要内容:

  • 从逻辑回归出发(逻辑回归实际上可以视为没有隐含层的神经网络,为下一节引出神经网络做了铺垫),期间插入了对Python编程的介绍(用Numpy进行向量化矩阵化的运算,jupyter note的使用)
  • 实现一个浅层的神经网络的训练(单隐含层的神经网络,激活函数的选择,前向传播与误差反向传播算法,权值的初始化)
  • 实现深层神经网络的训练(多隐含层的神经网络,超参数和参数)

7 第二课:改进神经网络:超参数调整、正则化和优化

第二课:改进神经网络:超参数调整、正则化和优化-CSDN博客

主要内容:

  • 神经网络训练的一些技术(训练集测试集,偏差和方差,正则化,Dropout,归一化,梯度检查的方法)
  • 神经网络训练的优化算法介绍(最小批梯度算法,指数平滑改进梯度算法,RMSprop, Adam, 学习率的选择)
  • 超参数搜索方法,Batch Norm,多分类问题softmax函数,深度学习框架tensorflow

8 第三课:构建机器学习项目

第三课:构建机器学习项目-CSDN博客

主要内容:

  • 机器学习的一些实践经验和技巧(human-level performance,误差分析,训练集测试集分布不一样,迁移学习,多任务学习,端到端学习)

9 第四课:卷积神经网络

主要内容:

第四课:卷积神经网络-CSDN博客

  • CNN的基础内容(计算机视觉、图片边缘检测、卷积、池化等)
  • AlexNet、LeNet、VGG、ResNet、Inception Network、1乘1卷积、迁移学习、数据扩充等
  • 目标定位、目标检测、Bounding Box预测、交并比、非最大值抑制NMS、Anchor box、YOLO算法、候选区域region proposals等
  • 人脸识别、one-shot学习、Siamese网络、Triplet损失、风格迁移、内容损失、风格损失、1D-3D卷积等

10 第五课:序列模型

主要内容:

第五课:序列模型-CSDN博客

  • RNN简介,不同类型的RNN、语言模型、新序列采样、RNN梯度消失、GRU、LSTM、双向RNN、深层RNNs等;
  • 序列到序列模型、集束搜索(Beam search)、集束搜索误差分析、Bleu得分、注意力模型、注意力权重、语音识别、触发字检测等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值