人工智能各名词扫盲

随着智能制造热潮的到来,人工智能应用已经贯穿于设计、生产、管理和服务等制造业的各个环节。

1 人工智能技术的三个层次

人工智能技术和产品经过过去几年的实践检验,目前应用较为成熟,推动着人工智能与各行各业的加速融合。从技术层面来看,业界广泛认为,人工智能的核心能力可以分为三个层面,分别是计算智能、感知智能、认知智能。

1.1 计算智能

计算智能即机器具备超强的存储能力和超快的计算能力,可以基于海量数据进行深度学习,利用历史经验指导当前环
境。随着计算力的不断发展,储存手段的不断升级,计算智能可以说已经实现。例如 AlphaGo 利用增强学习技术完胜
世界围棋冠军;电商平台基于对用户购买习惯的深度学习,进行个性化商品推荐等。

1.2 感知智能

感知智能是指使机器具备视觉、听觉、触觉等感知能力,可以将非结构化的数据结构化,并用人类的沟通方式与用户互动。随着各类技术发展,更多非结构化数据的价值被重视和挖掘,语音、图像、视频、触点等与感知相关的感知智能也在快速发展。无人驾驶汽车、著名的波士顿动力机器人等就运用了感知智能,它通过各种传感器,感知周围环境并进行处理,从而有效指导其运行。

1.3 认知智能

相较于计算智能和感知智能,认知智能更为复杂,是指机器像人一样,有理解能力、归纳能力、推理能力,有运用知识的能力。目前认知智能技术还在研究探索阶段,如在公共安全领域,对犯罪者的微观行为和宏观行为的特征提取和模式分析,开发犯罪预测、资金穿透、城市犯罪演化模拟等人工智能模型和系统;在金融行业,用于识别可疑交易、预测宏观经济波动等。要将认知智能推入发展的快车道,还有很长一段路要走。

2 人工智能制造业应用场景

从应用层面来看,一项人工智能技术的应用可能会包含计算智能、感知智能等多个层次的核心能力。工业机器人、智能手机、无人驾驶汽车、无人机等智能产品,本身就是人工智能的载体,其硬件与各类软件结合具备感知、判断的能力并实时与用户、环境互动,无不是综合了多种人工智能的核心能力。

  • 场景一:智能分拣制造业上有许多需要分捡的作业,如果采用人工的作业,速度缓慢且成本高,而且还需要提供适宜的工作温度环境。如果采用工业机器人进行智能分拣,可以大幅减低成本,提高速度。

  • 场景二:设备健康管理基于对设备运行数据的实时监测,利用特征分析和机器学习技术,一方面可以在事故发生前进行设备的故障预测,减少非计划性停机。另一方面,面对设备的突发故障,能够迅速进行故障诊断,定位故障原因并提供相应的解决方案。在制造行业应用较为常见,特别是化工、重型设备、五金加工、3C 制造、风电等行业。

3 专业术语

3.1 线性回归

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

  1. 数学

线性回归有很多实际用途。分为以下两大类:

  • 如果目标是预测或者映射,线性回归可以用来对观测数据集的和 X 的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的 X 值,在没有给定与它相配对的 y 的情况下,可以用这个拟合过的模型预测出一个 y 值。

  • 给定一个变量 y 和一些变量 X1,…,Xp,这些变量有可能与 y相关,线性回归分析可以用来量化 y 与 Xj 之间相关性的强度,评估出与 y 不相关的 Xj,并识别出哪些 Xj 的子集包含了关于 y 的冗余信息。

  1. 趋势线

一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如 GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。

  1. 流行病学

假设我们有一个回归模型,在这个回归模型中某些行为是我们最感兴趣的独立变量,其相关变量是经数年观察得到的行为者寿命。研究人员可能将社会经济地位当成一个额外的独立变量,已确保任何经观察所得的行为对寿命的影响不是由于教育或收入差异引起的。然而,我们不可能把所有可能混淆结果的变量都加入到实证分析中。例如,某种不存在的基因可能会增加人死亡的几率,还会让人的行为量增加。因此,比起采用观察数据的回归分析得出的结论,随机对照试验常能产生更令人信服的因果关系证据。当可控实验不可行时,回归分析的衍生,如工具变量回归,可尝试用来估计观测数据的因果关系。

  1. 金融

资本资产定价模型利用线性回归以及 Beta 系数的概念分析和计算投资的系统风险。这是从联系投资回报和所有风险性资产回报的模型 Beta 系数直接得出的。

  1. 经济学

线性回归是经济学的主要实证工具。例如,它是用来预测消费支出,固定投资支出,存货投资,一国出口产品的购买,进口支出,要求持有流动性资产,劳动力需求、劳动力供给。

3.2 人工智能(Artificial Intelligence)

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。“人工智能”是“一门技术科学”,它研究与开发的对象是“理论、技术及应用系统”,研究的目的是为了“模拟、延伸和扩展人的智能”。我们现在看到的貌似很高端的技术,如图像识别、NLP,其实依然没有脱离这个范围,就是“模拟人在看图方面的智能”和“模拟人在听话方面的智能”,本质上和“模拟人在计算方面的智能”没啥两样,虽然难度有高低,但目的是一样的——模拟、延伸和扩展人的智能。另外,人工智能在50年代就提出了。

3.3 机器学习

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能核心,是使计算机具有智能的根本途径。

机器学习有下面几种定义:

  1. 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
  2. 机器学习是对能通过经验自动改进的计算机算法的研究。
  3. 机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

随着人对计算机科学的期望越来越高,要求它解决的问题越来越复杂,已经远远不能满足人们的诉求了。于是有人提出了一个新的思路——能否不为难码农,让机器自己去学习呢?机器学习就是用算法解析数据,不断学习,对世界中发生的事做出判断和预测的一项技术。研究人员不会亲手编写软件、确定特殊指令集、然后让程序完成特殊任务;相反,研究人员会用大量数据和算法“训练”机器,让机器学会如何执行任务。这里有三个重要的信息:1、“机器学习”是“模拟、延伸和扩展人的智能”的一条路径,所以是人工智能的一个子集;2、“机器学习”是要基于大量数据的,也就是说它的“智能”是用大量数据喂出来的;3、正是因为要处理海量数据,所以大数据技术尤为重要;“机器学习”只是大数据技术上的一个应用。常用的10大机器学习算法有:决策树、随机森林、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔科夫。

3.4 深度学习

相较而言,深度学习是一个比较新的概念,严格地说是2006年提出的。深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep Belief Nets,简称DBN)。其主要的思想就是模拟人的神经元,每个神经元接受到信息,处理完后传递给与之相邻的所有神经元即可。所以看起来的处理方式有点像下图(想深入了解的同学可以自行google)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l3ygBCuD-1611470614893)(深度学习神经元.jpg)]

神经网络的计算量非常大,事实上在很长时间里由于基础设施技术的限制进展并不大。而GPU的出现让人看到了曙光,也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型。事实上,提出“深度学习”概念的Hinton教授加入了google,而Alpha go也是google家的。

3.5 梯度下降

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

梯度:对于可微的数量场 f(x,y,z) 以为分量的向量场称为 f 的梯度或斜量。 [1]

梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型

总结

  • 人工智能是一个很老的概念,机器学习是人工智能的一个子集,深度学习又是机器学习的一个子集。机器学习与深度学习都是需要大量数据来“喂”的,是大数据技术上的一个应用,同时深度学习还需要更高的运算能力支撑,如GPU。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cyjw5M6t-1611470614896)(人工智能的关系.jpg)]

习都是需要大量数据来“喂”的,是大数据技术上的一个应用,同时深度学习还需要更高的运算能力支撑,如GPU。

[外链图片转存中…(img-Cyjw5M6t-1611470614896)]

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页