建议看的时候全程哼唱小岳岳的:
可能我撞了南墙才会回头吧
1. 回溯算法
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
1.1. 基本思想
回溯算法的基本思想是
:从一条路往前走,能进则进,不能进则退回来,换一条路再试。八皇后问题就是回溯算法的典型,第一步按照顺序放一个皇后,然后第二步符合要求放第2个皇后,如果没有位置符合要求,那么就要改变第一个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了。回溯在迷宫搜索中使用很常见,就是这条路走不通,然后返回前一个路口,继续下一条路。回溯算法说白了就是穷举法。不过回溯算法使用剪枝函数,剪去一些不可能到达 最终状态(即答案状态)的节点,从而减少状态空间树节点的生成。回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先
的方式系统地搜索问题的解的算法称为回溯法
,它适用于解一些组合数较大
的问题。
1.2. 回溯法解题的一般步骤:
-
针对所给问题,确定问题的解空间:
- 首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。
-
确定结点的扩展搜索规则
-
以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
2. 案例题
2.1. 八皇后问题
2.2.1. 问题描述
八皇后问题(英文:Eight queens),是由国际象棋棋手马克斯·贝瑟尔于1848年提出的问题,是回溯算法的典型案例。
问题表述为:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。如果经过±90度、±180度旋转,和对角线对称变换的摆法看成一类,共有42类。计算机发明后,有多种计算机语言可以编程解决此问题。
2.3.2. 回溯算法思路
八皇后问题如果用穷举法需要尝试88=16,777,216种情况。每一列放一个皇后,可以放在第 1 行,第 2 行,……,直到第8行。穷举的时候从所有皇后都放在第1行的方案开始,检验皇后之间是否会相互攻击。如果会,把列H的皇后挪一格,验证下一个方案。移到底了就“进位”到列G的皇后挪一格,列H的皇后重新试过全部的8行。这种方法是非常低效率的,因为它并不是哪里有冲突就调整哪里,而是盲目地按既定顺序枚举所有的可能方案。
回溯算法优于穷举法。
将列A的皇后放在第一行以后,列B的皇后放在第一行已经发生冲突。这时候不必继续放列C的皇后,而是调整列B的皇后到第二行,继续冲突放第三行,不冲突了才开始进入列C。如此可依次放下列A至E的皇后,如图2所示。将每个皇后往右边横向、斜向攻击的点位用叉标记,发现列F的皇后无处安身。这时回溯到列E的皇后,将其位置由第4行调整为第8行,进入列F,发现皇后依然无处安身,再次回溯列E。此时列E已经枚举完所有情况,回溯至列D,将其由第2行移至第7行,再进入列E继续。按此算法流程最终找到如图3所示的解,成功在棋盘里放下了8个“和平共处”的皇后。继续找完全部的解共92个。
回溯算法求解八皇后问题的原则是:有冲突解决冲突,没有冲突往前走,无路可走往回退,走到最后是答案。为了加快有无冲突的判断速度,可以给每行和两个方向的每条对角线是否有皇后占据建立标志数组。放下一个新皇后做标志,回溯时挪动一个旧皇后清除标志。
2.3.3. 效果图
2.3.4. 代码
using GraphBaseFramewark;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace GraphNQueensAlgorithm
{
/// <summary>
/// GraphNQueensCanvas.xaml 的交互逻辑
/// </summary>
public partial class GraphNQueensCanvas : UserControl, IGraphAlgorithmCanvas
{
public GraphNQueensCanvas()
{
InitializeComponent();
}
public string GraphAlgorithmName
{
get
{
return "回溯算法-N皇后问题";
}
}
List<ShapeSquare> listShapeSquare = new List<ShapeSquare>();
ShapeSquare[,] PlotShapeSquare = null;
int QueensNodeCount = 0;
private void btnCreateRelNode_Click(object sender, RoutedEventArgs e)
{
listShapeSquare = new List<ShapeSquare>();
QueensNodeCount = Convert.ToInt32(tbQueensNodeCount.Text);
PlotShapeSquare = new ShapeSquare[QueensNodeCount, QueensNodeCount];
int startX = 50;
int startY = 50;
for (int i = 0; i < QueensNodeCount; i++)
{
startX = 50;
for (int j = 0; j < QueensNodeCount; j++)
{
startX = startX + 40;
ShapeSquare pShapeSquare = new ShapeSquare
{
DisplayName = "",
Width = 40,
Height = 40,
StartX = startX,
StartY = startY
};
pShapeSquare.Fill = Brushes.BurlyWood;
PlotShapeSquare[i, j] = pShapeSquare;
pShapeSquare.Tag = new Tuple<int, int>(i, j);
listShapeSquare.Add(pShapeSquare);
}
startY = startY + 40;
}
ucGraphCanvas.Width = 2000;
ucGraphCanvas.Height = 2000;
ucGraphCanvas.InitGraphShapeSquare(listShapeSquare);
}
public override string ToString()
{
return this.GraphAlgorithmName;
}
List<ShapeSquare> StackShapeSquare = new List<ShapeSquare>();
int ResultCount = 0;
/// <summary>
/// 按钮回溯解法
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void btnReCallBack_Click(object sender, RoutedEventArgs e)
{
ResultCount = 0;
for (int i = 0; i < QueensNodeCount; i++)
{
ShapeSquare pFirstShapeSquare = PlotShapeSquare[0, i];
StackShapeSquare.Clear();
PushShapeSquare(pFirstShapeSquare);
for (int j = 1; j < QueensNodeCount; j++)
{
ReCallBackInfo(j);
}
PopShapeSquare();
}
Console.WriteLine($"一共:{ResultCount}解法");
}
/// <summary>
/// 回溯解法
/// </summary>
/// <param name="rowIndex"></param>
/// <returns></returns>
private bool ReCallBackInfo(int rowIndex)
{
if (StackShapeSquare.Count == QueensNodeCount)
{
ResultCount++;
Console.WriteLine(string.Format("第{0}种解法:{1}", ResultCount,string.Join(" ", StackShapeSquare.Select(a=>$"[{a.Tag}]"))));
return false;
}
if (rowIndex >= QueensNodeCount)
{
return false;
}
else
{
for (int columnIndex = 0; columnIndex < QueensNodeCount; columnIndex++)
{
ShapeSquare pShapeSquare = GetShapeSquare(rowIndex, columnIndex);
pShapeSquare.Fill = Brushes.Aqua;
if (CheckClash(pShapeSquare))
{
pShapeSquare.Fill = Brushes.Transparent;
DoEvents();
}
else
{
PushShapeSquare(pShapeSquare);
if (ReCallBackInfo(rowIndex + 1))
{
return true;
}
else
{
PopShapeSquare();
}
}
}
return false;
}
}
/// <summary>
/// 检查皇后是否冲突
/// </summary>
/// <param name="pShapeSquare"></param>
/// <returns></returns>
private bool CheckClash(ShapeSquare pShapeSquare)
{
Tuple<int, int> pShapeSquareTag = pShapeSquare.Tag as Tuple<int, int>;
foreach (var item in StackShapeSquare)
{
Tuple<int, int> itemTag=item.Tag as Tuple<int, int>;
if (itemTag.Item2 == pShapeSquareTag.Item2)
{
return true;
}
if ((itemTag.Item1 - pShapeSquareTag.Item1) == (itemTag.Item2 - pShapeSquareTag.Item2))
{
return true;
}
if ((itemTag.Item1 - pShapeSquareTag.Item1) == -(itemTag.Item2 - pShapeSquareTag.Item2))
{
return true;
}
}
return false;
}
private ShapeSquare GetShapeSquare(int rowIndex, int columnIndex)
{
return listShapeSquare[rowIndex * QueensNodeCount + columnIndex];
}
private void PopShapeSquare()
{
ShapeSquare pShapeSquare= StackShapeSquare[StackShapeSquare.Count - 1];
StackShapeSquare.RemoveAt(StackShapeSquare.Count - 1);
pShapeSquare.Fill = Brushes.Transparent;
DoEvents();
}
private void DoEvents()
{
Thread.Sleep(10);
System.Windows.Forms.Application.DoEvents();
}
private void PushShapeSquare(ShapeSquare pShapeSquare)
{
pShapeSquare.Fill = Brushes.BurlyWood;
StackShapeSquare.Add(pShapeSquare);
DoEvents();
}
}
}
3. 回溯算法与穷举法
与穷举法相比,回溯法的“聪明”之处在于能适时“回头”,若再往前走不可能得到解,就回溯,退一步另找线路,这样可省去大量的无效操作。因此,回溯与穷举相比,回溯更适宜于量比较大,候选解比较多的问题。