Ubuntu22.04安装CUDA Toolkit、cuDNN全流程

一、GPU、NVIDIA Graphics Drivers、CUDA、CUDA Toolkit和cuDNN的关系

    1.GPU:显卡。
    2.NVIDIA Graphics Drivers:显卡驱动。
    3.CUDA:一种由NVIDIA推出的通用并行计算架构,是一种并行计算平台和编程模型,该架构使GPU能够解决复杂的计算问题。在安装NVIDIA Graphics Drivers时,CUDA已经捆绑安装,无需另外安装。
    5.CUDA Toolkit:包含了CUDA的runtime API、CUDA代码的编译器nvcc(CUDA也有自己的语言,代码需要编译才能执行)和debug工具等。需要自己下载安装。
    6.cuDNN:基于CUDA Toolkit,专门针对深度神经网络中的基础操作而设计基于GPU的加速库。需要自己下载安装。

二、安装CUDA Toolkit

1.查询已安装显卡驱动版本

nvidia-smi

2.查询需要下载的对应CUDA Toolkit版本

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html</
### 安装准备 为了确保顺利安装 CUDAcuDNN,在开始之前需确认已准备好必要的前提条件。这包括但不限于更新系统的软件包列表并安装一些基本工具: ```bash sudo apt-get update sudo apt-get install g++ gcc make ``` 这些命令会帮助保持系统处于最新状态,并提供编译过程中可能需要用到的基础构建工具[^4]。 ### 查看显卡支持的最高CUDA版本 在正式安装前,建议先验证当前使用的 NVIDIA 显卡能够兼容哪个版本的 CUDA。可以通过运行 `nvidia-smi` 命令来查看显卡信息及其所能支持的最大 CUDA 版本号。注意,所选的 CUDA 版本不应超过此最大值[^1]。 ### 下载合适的CUDA Toolkit 访问[NVIDIA官方网站](https://developer.nvidia.com/cuda-toolkit-archive),根据自己的需求挑选适合的操作系统(这里是 Ubuntu 22.04)以及对应的架构(x86_64)和所需的特定版本进行下载。选择本地.deb文件作为安装方式可以简化过程中的依赖关系处理。 完成下载之后,按照如下步骤继续操作: #### 安装CUDA 1. 添加NVIDIA软件源公钥到APT密钥环中; 2. 注册CUDA Debian仓库; 3. 更新apt包索引; 4. 使用apt管理器安装CUDA; 具体指令如下所示: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 以上命令将会自动解析并解决所有必需项之间的相互依存关系,从而顺利完成整个CUDA套件的部署工作。 ### 设置环境变量 为了让系统识别新安装好的CUDA路径,默认情况下并不需要手动设置PATH或LD_LIBRARY_PATH等环境变量。但如果遇到任何问题,则可以在~/.bashrc或其他shell配置文件里加入下面两行代码以指定相应位置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 最后记得执行source ~/.bashrc使更改生效。 ### 验证CUDA安装情况 此时应该已经成功完成了CUDA的全部安装流程。为了进一步检验其有效性,可以从终端输入nvcc --version查询编译器的具体版本信息。如果一切正常的话,应当能看到有关于刚刚安裝的那个CUDA版本的相关描述。 ### 下载与安装cuDNN库 前往[NVIDIA开发者专区](https://developer.nvidia.com/rdp/form/cudnn-download-survey)注册账号后即可获得不同版本cuDNN SDK的下载权限。选择匹配先前选定之CUDA版本的那一款Linux x86_64 (Tarball)[^2]。 解压tar.gz压缩包至目标目录下(/usr/local/),并将其中的内容复制过去覆盖默认存在的同名文件夹内容。完成后同样别忘了调整好相应的环境变量指向新的cuDNN头文件及动态链接库所在之处。 ### 测试cuDNN是否正确加载 通过以下命令测试能否读取到正确的cuDNN版本号,以此判断刚才的一系列动作是否有误: ```bash cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 ``` 上述命令应返回类似于这样的输出结果:“#define CUDNN_MAJOR 8”,表明现在正在使用的是第8版次的主要发行版本[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值