论文阅读:CNN-RNN: A Unified Framework for Multi-label Image Classification

 CNN-RNN: A Unified Framework for Multi-label Image Classification

Updated on 2018-08-07 22:30:41

Paperhttps://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_CNN-RNN_A_Unified_CVPR_2016_paper.pdf

 

本文提出了一种 model 多标签之间关系的一种模型,即:CNN-LSTM 模型。

我认为该模型的想法来自于 Image Caption的常规套路。

  

 

上图就是本文的流程图,可以看到,类似 Image Caption的思路,本文首先利用 CNN 对输入的图像进行编码,得到其特征;

然后将其进行 embedding,投影到和单词一致的空间中,在该空间中,利用 LSTM 进行单词的搜索训练。然后测试的时候,利用 beam search 进行搜索,得到的单词,就是对应该图像的标签。

  

 

实验部分的一些现象:

1. 本文算法在大目标 和 具有依赖性的物体上,识别效果比较好,如:行人,斑马;“sports bar” 和 “baseball glove”;

而在小目标 和 不具有依赖性的物体上,则表现较差,如:“toaster” 和 “hair drier”。

 

转载于:https://www.cnblogs.com/wangxiaocvpr/p/6859190.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值