更好的理解CLIP模型

CLIP模型使用(ViT+BERT)

这个ViT+BERT只说明最简单的CLIP文本输出格式,它的输出有什么,之后的文章将会引出两个模态的 embeds 从何而来,它是如何从模型的输出特征中提取出来,为此模型实际上又做了什么改变

在这里插入图片描述

from transformers import CLIPProcessor, CLIPModel
from PIL import Image
from IPython import embed
from transformers import CLIPTokenizer
import torch

model_name = "/public_bme/data/breast-10-12/CausalFromText/clip-vit-b-16/"
model = CLIPModel.from_pretrained(model_name)
tokenizer = CLIPTokenizer.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained(model_name)

texts = ["This is a description of the first image.", "New as a word of the good fuck."]
images = [Image.open("CLIP.png"), Image.open("CLIP.png")]
inputs_text = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值