【全身病灶定位的文章】(不想整理了,一堆屎)

全身病灶定位的文章

我在《 An end-to-end multi-task system of automatic lesion detection and anatomical localization in whole-body bone scintigraphy by deep learning 》这个文章中,发现这个工作和这个病灶非常类似。
同时发现对于 (lesion detection)领域,Sadik(2006,2008,2009)都有研究,这是一个连续的工作,因此,我从Sadik 的文章入手,虽然Sadik的文章是从bone scan,但是和PET-CT的影像很像。
2006, Sadik,”A new computer-based decision-support system for the
interpretation of bone scans“

Sadik:
  1. 2006年,sadik对病灶的定位方法是thresholding algorithm,对器官的定位方法是也是阈值,将图片使用这些处理之后,提取量化特征,这些量化特征被输入神经网络,进行分类。
  2. 2008年,sadik改进了分割模型,使用了active-shape model模型,同时对分割的流程改进了,将骨骼分成4个类别进行区分,针对每一个区域进行迭代优化,使用了更大的数据集,使用了更大神经元个数。(输入神经炎里面的特征依然是量化结果的特征)
  3. 2009年,sadik对自己的CAD系统进行跟踪测试,证明了CAD系统的有效性。
ChatCAD:
  1. 2023年,ChatCAD,将医学信息初步与大预言模型进行结合。试图做出符合医疗需求的CAD模型,将CAD的概念和大预言模型的概念进行结合,进行诊断辅助。将疾病种类分类,疾病分割向量,caption输入进入大预言模型中,进行文本输出。
  2. 2024年,ChatCAD+, 加入了retrieve的过程,但同时也丢弃了其他网络CAD的信息,是图生文RAG版本,同时还具有chain-thought,跟上了图生文部分的主要思潮。(缺乏点临床关注度,技术性探索文章)
Raphael Sexauer:
  1. 2018年,在文章Comparing TNM Staging Completeness and Processing Time of Text‐Based Reports versus Fully Segmented and Annotated PET/CT Data of Non‐Small‐Cell Lung Cancer." 中,医生探究了,分割模型和文本模型的时间效益,证明了分割模型也许在临床使用效果更好。
Classification (Natural Language Processing Algorithm):
  1. 2024年,J. Martijn Nobel通过使用自然语言,对文本进行分类Natural Language Processing Algorithm Used for Staging Pulmonary Oncology from Free-Text Radiological Reports: “Including PET-CT and Validation Towards Clinical Use”使用语言模型逻辑,对文本报告进行分类。
Bradshaw (from findings to impression):
  1. 2024年,Bradshaw(Tyler J. Bradshaw 1)使用PET的findings文本信息,输入进入语言模型,输出impression的诊断结果,这个问题不同于CT,MRI,X-ray这样的任务,它的词汇和内容更加复杂,最终结果表明PEGASUS语言模型的结果效果最好。(有两篇文章,一张是arxiv,一个是journal of imaging)
  1. 仅仅进行图生文实际上没有医疗有效性,不符合医生的需要,同时在临床上看,仅仅生成文本报告不仅缺乏很多病理的分期信息,不是特别结构化,同时仅仅分析文本报告,而忽略分割模型,反而会导致医生分析时间的增加。

对于 CLIP 的文章,实际上,可以追溯到 VLP ,这样的多模态背景。对于文本定位的任务,比重很重要。在视觉和语言表征学习中,Grounding通常也表示,匹配,定位,关联的意思。

同时,我也注意到了一个问题,那就是为什么要做CLIP,为什么要alignment,我注意到了transformer结构,也就是注意力问题。实际上,信息的交互需要联系在一起,K,Q,V之间之所以有价值,就是特征向量相似。也就是,多模态里面alignment要做的就是通过对齐,加强交互能力。

大语言模型的开始
BERT (Google AI Language)
  1. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
GPT1 (Open AI)
  1. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018.
GPT3 (Open AI)
  1. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
RoBERTa (Facebook)
  1. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
XLNet (Google AI Brain Team)
  1. Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems, pp. 5754–5764, 2019.
T5 (Google AI Brain Team)
  1. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
    transformer. arXiv preprint arXiv:1910.10683, 2019.
VLP, 领域,特征对齐------多模态领域------开山文章
(1) LXMERT:
UNC chapel hill, (HaoTan, MohitBansal)的文章, 是two-stream的架构,三个encoder,objection relationship encoder, language encoder, cross-modal encoder三个都是encoder
在这里插入图片描述
(2) VL-T5, VL-BERT
UNC chapel hill (HaoTan, MohitBansal)学校的文章 Unifying Vision-and-Language Tasks via Text Generation,应该是在VLP领域,属于属于single-stream结构。应该是,第一个使用single model,parameter的模型,处理多模态数据,使用encoder-decoder结构。
在这里插入图片描述
(3) VisualBERT
Li, Liunian Harold, et al. “Visualbert: A simple and performant baseline for vision and language.” arXiv preprint arXiv:1908.03557 (2019).属于属于single-stream结构。
在这里插入图片描述
(4) ViLBERT
Lu, Jiasen, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks.” Advances in neural information processing systems 32 (2019).属于属于two-stream结构,有三个encoder,两个bert结构的encoder,一个co-encoder,不限长度输入。
在这里插入图片描述
(5) UNITER
Chen, Yen-Chun, et al. “Uniter: Universal image-text representation learning.” European conference on computer vision. Cham: Springer International Publishing, 2020. 有两个 embedder
在这里插入图片描述
(6) VideoBERT (Google AI Research)
Sun, Chen, et al. “Videobert: A joint model for video and language representation learning.” Proceedings of the IEEE/CVF international conference on computer vision. 2019.
(7) VLBERT (Google AI Research)
Su, Weijie, et al. “Vl-bert: Pre-training of generic visual-linguistic representations.” arXiv preprint arXiv:1908.08530 (2019).作者的结论是无论是single-stream还是two-stream,任务的表现结果的可以很好,可能是训练的任务,或者数据有作用而不是所谓的结构。
在这里插入图片描述
(7) OScar:
Li, Xiujun, et al. “Oscar: Object-semantics aligned pre-training for vision-language tasks.” Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16. Springer International Publishing, 2020.。这个文章实际上,就是用对齐的技术,之不过是用tag标签进行的对齐。它的作用实际上就是CLIP的特征对其技术。这个原因可以通过t-SNE图观察到。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

转折点 CLIP,ALBEF, BLIP : 随着研究的深入,研究者发现特征对齐,是非常重要的
CLIP
Radford 使用的是,two-stream的结构,两个都是encoder,做的 ITC (Image-text contrastive learning)
ALBEF
使用的是,two-stream的结构,对齐后面还 fusion 融合,使用cross attention,在 MTM 和 ITM 任务上使用。
医学 VLP 的多模态文章:
GLoRIA:
  1. Wang sha
AFLoC:
  1. Wang shanshan, Zhang Kang 的文章Multi-modal vision-language model for generalizable annotation-free pathological lesions localization and clinical diagnosis这个文章使用比 GLoRIA 更多的,全局,局部,信息内容,目标内容是定位。更加符合我们的的目的,但同样是没有segmentation的信息,画出来的heatmap依然是模糊的,同时还是依然在2D图片上
MdeKILP:
  1. Xie Weidi的文章,Xie Weidi对医学语言大模型上的文章有很多,类似的其中一个是MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training是一个自监督的VLP任务,加入了domain-knowledge放入,文本语义实体中,在两种模态上使用基于transformer的fusion module
  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值