经典案例 | 智能眼镜中瞳距调节和近视调节的应用

行业全景:高速增长背后的技术竞速

全球智能眼镜市场正经历爆发式增长。据IDC预测,2025年市场规模将突破50亿美元,年复合增长率达18%。其中,工业领域以40%的占比主导市场,医疗(25%)与消费电子(20%)紧随其后。

(图片来自AI生成)

当前技术竞速风向聚焦在AR+AI深度融合、5G云交互上。而灵伴科技创始人祝铭明凭借AR+AI眼镜Rokid Glasses就在全国范围内火速出圈,灵伴科技也成为继游戏科学、深度求索、宇树科技、云深处科技、强脑科技和群核科技这六小龙之后的第七小龙。

智能眼镜中的硬核痛点:穿透繁荣表象的技术桎梏

1.光学显示的“不可能三角”

现阶段产品普遍陷入亮度、功耗、体积的博弈困境,另外视场角局限:主流设备FOV不足60°,而人类自然视野达210°(数据来源:IEEE显示技术委员会)、户外可见性:2000nits亮度需求导致续航缩水50%(对比实验:EPSON BT-45C在强光下续航从6h→2.8h)也是急需解决的问题。

2.传感系统的精度天花板

关键性能指标尚未突破工业级要求:SLAM定位±1cm、眼球追踪延迟<20ms、温度监测±0.3℃ 等。

3.用户体验的“阿喀琉斯之踵”

用户调研显示(样本量N=5000):

(1)佩戴不适:43%用户因镜腿发热(>42℃)或鼻托压迫感放弃长期使用。

(2)交互挫败:手势误触发率31.7%,嘈杂环境下语音指令识别率骤降至65%。

图片

(图片来自AI生成)

昆泰芯磁传感器在VR眼镜中的应用及解决方案

1.电源管理与节能

(1)电源开关控制:磁传感器可以用于 VR眼镜的电源开关控制。通过在眼镜的开合部位或特定的操作区域设置磁性开关,当用户打开或关闭 VR 眼镜时,磁传感器会检测到磁场的变化,从而触发电源的开启或关闭操作。

(2)智能节能模式:在 VR 眼镜处于闲置状态时,磁传感器可以检测到用户的长时间无操作,然后将信号传输给系统,使 VR 眼镜自动进入节能模式。

KTH57系列专为微功耗位置检测设计,可通过I2C或SPI总线编程,在睡眠唤醒模式下芯片检测到磁感应强度变化满足设定阈值后,INT脚会产生一个高电平信号,可以用来唤醒外部休眠系统,便于实现系统级的低功耗设计。

2.瞳距调节&近视调节功能

昆泰芯磁传感芯片KTH57系列在瞳距调节以及近视调节的应用上用于检测位移。瞳距检测是镜框可以左右移动,两个镜框左右移动是同步的,水平位移有7mm;近视调节是左右镜框可以物理调节前后伸缩,运动距离有 4.5mm。

图片

(1)左近视调节

左镜框在移动 4.5mm 范围内,通过检测 XZ两轴的磁场变化情况来标定实际运动距离。

(2)瞳距调节

左右镜框同步靠近或者远离,在移动 7mm 范围内,通过检测 XZ两轴的磁场变化情况来标定实际运动距离。

(3)右近视调节

右镜框在移动 4.5mm 范围内,通过检测 XZ 两轴的磁场变化情况来标定实际运动距离。

在智能眼镜从「功能机」向「智能体」演进的关键窗口期,中国企业正通过底层技术创新+垂直场景深耕构建差异化竞争力并精准卡位痛点:在光学显示(华为光波导)、传感(昆泰芯磁定位)、交互(大疆手势算法)等关键节点建立技术壁垒。场景定义技术:工业场景优先突破可靠性(如歌尔与宝钢合作的钢炉巡检系统),消费场景聚焦体验优化(OPPO与王者荣耀联动的AR对战模式)。

图片

(图片来自AI生成)

2025年将成为分水岭——那些在底层传感器、光学模组、场景化算法三个维度完成「硬科技筑基」的企业,将主导价值超2000亿美元的下一代AR生态体系。

数据集介绍:塑料瓶硬币目标检测数据集 一、基础信息 数据集名称:塑料瓶硬币目标检测数据集 数据规模: - 训练集:5,699张图片 - 验证集:885张图片 - 测试集:414张图片 分类类别: - Plastic(塑料制品):涵盖常见塑料物品的检测 - Bottle(瓶类):包括各类塑料瓶及其他瓶型 - Coin(硬币):多国硬币的识别与定位 标注格式: YOLO格式标注,包含边界框坐标及类别标签,适配主流目标检测框架 二、适用场景 环保回收系统开发: 支持构建智能垃圾分类模型,精准识别塑料制品与瓶类,助力自动化分拣流水线建设。 零售自动化设备: 适用于自动售货机硬币识别模块开发,提升支付系统的准确性与可靠性。 计算机视觉教学: 提供多目标检测场景,适合目标检测算法教学与实验验证。 工业质检应用: 可用于塑料制品生产线中的缺陷检测或产品分类场景。 三、数据集优势 类别覆盖精准: 包含塑料制品、瓶类、硬币三大垂直类别,覆盖环保、零售等核心应用场景需求。 标注质量优异: 严格校验的YOLO格式标注,边界框定位精准,支持高精度目标检测模型训练。 场景多样性丰富: 数据包含不同光照条件下的硬币、多角度瓶体形态、多样化塑料制品,增强模型泛化能力。 工业适配性强: 数据规模适配工业级模型训练需求,支持从实验研究到实际部署的全流程开发。
数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值