如何利用电磁仿真如那件CST仿真共模电感的差、共模阻抗?

作者 | Zhou Ming

共模电感的差、共模曲线是器件选型的重要参数之一,如上图所示。如何通过仿真拿到这个阻抗曲线呢?今天教大家用CST来仿真共模电感的差、共模曲线。

方法一:利用mode converter。

第一步,从官网上下载器件的S参数(或Spice)模型,直接拖入CST电路工作室。

第二步,器件两端的pin脚分别连接mode converter,一端加port,另一端接地。

第三步,创建S参数task,增加采样点数,Z-parameters设置为on。

第四步,点击update,直接拿到差、共模阻抗曲线(共模Z11,差模Z22)。

方法二:利用差、共模测试原理。

第一步,把S参数模型按照下图两种方式连接,分别对应共模和差模。

第二步,创建S参数task,与第一种方法设置一致,增加采样点数,Z-parameters设置为on,点击update,同样可以拿到差、共模阻抗曲线(共模Z11,差模Z22)。

对比两种仿真方法仿真结果,得到的差、共模阻抗是一致的。

(内容、图片来源:CST仿真专家之路公众号,侵删)

版权与免责声明:

凡未注明作者、来源的内容均为转载稿,如出现版权问题,请及时联系我们处理。我们对页面中展示内容的真实性、准确性和合法性均不承担任何法律责任。如内容信息对您产生影响,请及时联系我们修改或删除。

【相关内容推荐】

Customer Success OPPO手机电源适配器EMC仿真

基于CST软件的48V BSG电驱动单杆天线辐射发射仿真

CST软件在仿真精度问题上有哪些优势?CST工作室套装简介

### 地面分割算法概述 地面分割是指从三维点云数据中识别并分离出属于地面的部分。这一过程对于自动驾驶、机器人导航等领域至关重要。不同的应用场景和技术需求促使多种地面分割算法的发展。 #### Patchwork++ 算法 Patchwork++ 算法通过将点云划分为较小的块,并对每个块进行地面/非地面分类,实现了高效的地面分割[^1]。该方法适用于各种点云处理应用,能够为后续任务提供可靠的地面信息支持。 #### 基于区域的方法 基于区域的方法利用邻域信息来归类具有相似属性的附近点,从而形成分割区域,并有效地区分不同区域间的异性[^2]。这类方法通常比基于边缘的方法更加精确,尽管存在一些挑战,比如如何准确界定区域边界等问题。 #### PCL 库中的 SACSegmentation 方法 PCL库提供了`pcl::SACSegmentation<pcl::PointXYZ>`函数用于简单的平面分割任务,在某些情况下可以直接采用这种方法来进行快速有效的地面检测[^3]。其优势在于参数调整相对容易,且能取得不错的分割效果。 #### RANSAC 模型拟合 在完成初步的地面点提取之后,可以运用随机抽样一致性(RANSAC)算法对这些点集执行模型拟合操作,进而获取更为精准稳定的地面表示形式[^4]。此步骤有助于提升整体分割质量。 #### 细化分割流程 由于初始阶段可能会出现过分割现象或者误判情况(如障碍物被错误标记成地面),因此有必要实施精细化处理措施以修正这些问题。具体做法包括但不限于重新评估候选点与其周围环境的关系等手段[^5]。 ```cpp // 使用C++和PCL库实现基本的RANSAC平面分割逻辑 #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> int main(int argc, char** argv){ pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 加载点云文件... pcl::SACSegmentation<pcl::PointXYZ> seg; pcl::PointIndices::Ptr inliers (new pcl::PointIndices); pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients); seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_PLANE); // 设置模型类型为平面 seg.setMethodType(pcl::SAC_RANSAC); // 选择RANSAC作为估计方法 seg.setMaxIterations(1000); // 设定最大迭代次数 seg.setDistanceThreshold(0.01); // 定义距离阈值 seg.setInputCloud(cloud); seg.segment(*inliers,*coefficients); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值