多目标优化中常用的绩效指标(Performance Indicator)(最全概括)

1.Generational Distance (GD)

GD绩效指标测量的是得到的解与已知的最优解之间的距离
我们假设得到的解集为A={a1,a2,…,a|A|} ,Pareto前沿为 Z={z1,z2,…,z|Z|}.
则GD的计算公式如下:

在这里插入图片描述
p=2时,di代表得到的解i与最近的参考点之间的欧几里得距离。

2.Generational Distance Plus (GD+)

GD+绩效指标与上面类似,测量的也是得到的解与已知的最优解之间的距离,只是稍做修改

则GD+的计算公式如下:
在这里插入图片描述
其中
在这里插入图片描述
它代表修改后的距离

3.Inverted Generational Distance (IGD)

IGD绩效指标与上面类似,测量的也是得到的解与已知的最优解之间的距离,只是测量的是从Pareto解集Z到到A的距离
则IGD的计算公式如下:
在这里插入图片描述
di^表示表示从Zi到A中最近的参考点的欧氏距离(p=2)。

4.Inverted Generational Distance Plus (IGD+)

IGD+绩效指标与上面类似,测量的也是从Pareto解集Z到到A的距离,时间复杂度为 O ( m N 2 ) O(mN^2) O(mN2),其中m是目标数,N是种群大小
则IGD+的计算公式如下:
在这里插入图片描述
其中
在这里插入图片描述

5.Hypervolume(HV)

对于上面的指标都需要已知的Pareto前沿,而HV不要,HV只需要一个参考点,HV衡量的是图中阴影部分面积,我们计算HV时会先计算出当前解集中的Pareto front(比如图中的三个点),再计算面积(两个目标)
在这里插入图片描述
这是个两目标的在目标空间上的示意图。r为参考点,p(1),p(2),p(3)是3个解。
与上面的1-4的指标不同,该指标越大越好,而上面的越小越好。

返回受约束的多目标优化问题优秀论文及总结目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值