肯德尔距离(Kendall’s-τ)

肯德尔距离(Kendall’s-τ)

肯德尔距离定义为两个序列Order排序的最小交换距离(定义是这样的,但直接理解成物品交换次数结果是一样的,不需要先转换成Order排序,只是转换后代码实现时算法的时间复杂度会变成线性的),用下面的实例进行讲解。

1.初始化序列
给定五个物品{1,2,3,4,5}和两个物品序列 σ = ( 2 , 1 , 4 , 5 , 3 ) \sigma=(2,1,4,5,3) σ=(2,1,4,5,3) π = ( 1 , 2 , 3 , 4 , 5 ) \pi=(1,2,3,4,5) π=(1,2,3,4,5)

2.计算序列的Order

首先可以生成两个序列的Order排序分别为 σ − 1 = ( 2 , 1 , 5 , 4 , 3 ) \sigma^{-1}=(2,1,5,4,3) σ1=(2,1,5,4,3) π − 1 = ( 1 , 2 , 3 , 4 , 5 ) \pi^{-1}=(1,2,3,4,5) π1=(1,2,3,4,5),其中 σ − 1 \sigma^{-1} σ1的3号位是5的原因是原本 σ \sigma σ的物品3放在了序列的第五个位置上,后面的 σ − 1 \sigma^{-1} σ1中出现的4和3原因是一样的。 π − 1 \pi^{-1} π1中刚好每个物品都在对应位置上,所以是 ( 1 , 2 , 3 , 4 , 5 ) (1,2,3,4,5) (1,2,3,4,5)

3.计算肯德尔距离 D k ( σ , π ) D_k(\sigma,\pi) Dk(σ,π)

将上述 σ − 1 = ( 2 , 1 , 5 , 3 , 4 ) \sigma^{-1}=(2,1,5,3,4) σ1=(2,1,5,3,4)相邻位置的order值两两交换,使其变成 π − 1 = ( 1 , 2 , 3 , 4 , 5 ) \pi^{-1}=(1,2,3,4,5) π1=(1,2,3,4,5),交换用下图示表示。我们将 D k ( σ , π ) D_k(\sigma,\pi) Dk(σ,π)定义为最小的交换次数。如图中需要交换3次,故 D k ( σ , π ) = 3 D_k(\sigma,\pi)=3 Dk(σ,π)=3
在这里插入图片描述

返回贝叶斯优化优秀论文总结目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值