老程序员与应届生你不知道的摩擦细节,太扎心了!

这是一名程序员在互联网社区的吐槽,其描述了事情的完整经过:公司一个应届毕业生,领导安排和我一起做项目,提交的代码有许多不合适的地方,命名不规范,结构混乱等,我在没有和他提前沟通的情况下做了部分重构,结果直接喷我,让我不要改他的代码,老哥们,遇到过这种情况吗?
在这里插入图片描述
也有网友表示:等Review 后打回让他自己改,以免出了什么问题还算你的,千万不要自己去改。你要教他如何去改,如果你要重构之前一定要和他说,不然以一个应届生的能力去看的话你写的代码,还不一定能够看得懂!

我代码有洁癖,觉得你代码风格不行;想看你的成品,但是你用pod了,而且git上没把profile传上去,别人无法运行的,虽然有经验的程序员可以自己解决,不过你既然开源了,就专业点吧。
在这里插入图片描述
关于老程序员和应届生之间的小摩擦,其实还有很多:

1、老程序员吐槽现在的校招应届生工资一个比一个高;看不惯应届生一有问题就问,缺乏自我学习能力,连Google一下都不会;代码没敲完还要跟着自己每天8点准时下班……

2、应届生嘀咕老程序员用的代码过时,技术不怎么样却喜欢趁着资历老指手画脚……
在这里插入图片描述
从这件事情本身我们可以看出 这就是一件典型的好心办了坏事案例。这名程序员原本是好心帮应届生改代码,但却因为没有提前沟通而惹恼了对方,因为每个人的代码风格不一致,别人改的不一定看得懂,后面会带来更大量的工作。当然这名应届生的态度也有问题,对老员工没有起码的尊重,虽然被改代码这事让人不爽,但起码的职场礼仪还是要的。

这里推荐一下我的前端学习交流群:751196913,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。2019最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值