如何构建船舵舵角和船的航向之间的动力学方程?它是一个一阶惯性环节吗?

提问

船舵和船的航向之间的动力学方程是什么?是一个一阶惯性环节吗?

回答

船舵和船的航向(航向角)之间的动力学关系并不是一个简单的一阶惯性环节,虽然在某些简化控制模型中可以近似为一阶系统。实际上,这一过程涉及船体的惯性、阻尼、水动力效应、舵效应和操纵延迟等多个因素,其本质是一个非线性、耦合的多变量系统。但我们可以从控制理论角度讨论常见的简化模型。


一、舵角与航向角之间的经典简化模型

在初步控制设计中,常用一个线性、低阶模型来描述这一关系:

Nomoto一阶模型(适用于缓慢转向船舶):

T d ψ ( t ) d t + ψ ( t ) = K δ ( t ) T \frac{d\psi(t)}{dt} + \psi(t) = K \delta(t) Tdtdψ(t)+ψ(t)=(t)

  • ψ ( t ) \psi(t) ψ(t):船的航向角(Yaw angle)
  • δ ( t ) \delta(t) δ(t):舵角(Rudder angle)
  • K K K:增益(rudder-to-yaw gain)
  • T T T:时间常数(表示系统惯性)

这是一个一阶惯性环节,但仅在小舵角、小航向变化、低速航行等理想化条件下成立。


二、Nomoto二阶模型(更精确)

对于动态性能更强(如高速船或大舵角)的船舶,需使用二阶模型:

T 2 d 2 ψ ( t ) d t 2 + T 1 d ψ ( t ) d t + ψ ( t ) = K δ ( t ) T_2 \frac{d^2\psi(t)}{dt^2} + T_1 \frac{d\psi(t)}{dt} + \psi(t) = K \delta(t) T2dt2d2ψ(t)+T1dtdψ(t)+ψ(t)=(t)

  • 增加了惯性项 T 2 T_2 T2,更能反映船舶的转动惯量效应。

三、非线性模型(真实动力学)

实际船舶的动力学还包括:

  • 水动力非线性(如:横向力和偏航力随舵角非线性变化)
  • 惯性耦合(偏航与侧向运动)
  • 流体滞后(舵后流的响应滞后)

更复杂的模型会基于下列非线性微分方程建立:

I z r ˙ + N r r + N δ δ + N r δ r δ + ⋯ = 0 I_z \dot{r} + N_r r + N_{\delta} \delta + N_{r\delta} r\delta + \dots = 0 Izr˙+Nrr+Nδδ+N+=0

ψ ˙ = r \dot{\psi} = r ψ˙=r

  • r = ψ ˙ r = \dot{\psi} r=ψ˙:偏航角速度
  • I z I_z Iz:船体绕垂直轴的转动惯量
  • N r , N δ N_r, N_\delta Nr,Nδ:水动力导数

四、结论

  • ✅ 在简化建模中(尤其是控制系统设计初期),可以将船舵到航向的动力学近似为一阶惯性环节
  • ❌ 但从物理和工程真实动力学角度来看,这种关系不是严格的一阶系统,而是一个非线性、耦合的多阶系统。

你可能想要的下一步是什么?

A. 更详细的Nomoto模型推导
B. MATLAB/Simulink中的仿真建模示例
C. 某类型船舶的实际动力学建模(请说明类型)
D. CFD方法对舵效应进行建模

请从以上选项中选择(或告诉我你具体的应用背景),我来进一步展开。

继续提问

在实际物理世界中,除了舵角,行进的线速度也会对航向角改变的效果造成影响吧?

回答

非常正确!✅ 在实际物理世界中船体的线速度(航行速度)对舵角引起的航向变化(偏航响应)有显著影响。这不仅是一个数量级变化问题,更是本质上的动态耦合效应。下面我们分层解释它是如何影响的:


🔁 一、线速度如何影响航向角响应

1. 舵面水动力依赖速度

舵产生的侧向力 F r F_r Fr 近似由下面的关系决定:

F r ∝ ρ V 2 A r sin ⁡ ( δ ) F_r \propto \rho V^2 A_r \sin(\delta) FrρV2Arsin(δ)

  • ρ \rho ρ:水密度
  • V V V船体在水中的速度(对水速度)
  • A r A_r Ar:舵的有效面积
  • δ \delta δ:舵角

✅ 因此,当船速增加时,舵产生的横向力更大,导致航向角变化速度更快。


2. 偏航力矩取决于速度

舵力矩对航向角的影响通过偏航力矩 N N N 实现:

N = l r F r ∝ V 2 N = l_r F_r \propto V^2 N=lrFrV2

  • l r l_r lr:舵面到船舶重心的距离(力臂)
  • 因此,在高航速下,相同舵角会产生更大的偏航力矩,使船更快改变航向

🧮 二、在动态模型中如何体现这种影响?

更真实的动力学模型会把速度作为动态输入量或参数之一。例如:

改进的Nomoto模型(速度相关):

T ( V ) d ψ d t + ψ = K ( V ) δ T(V) \frac{d\psi}{dt} + \psi = K(V) \delta T(V)dtdψ+ψ=K(V)δ

  • K ( V ) ∝ V K(V) \propto V K(V)V V 2 V^2 V2
  • T ( V ) T(V) T(V) 可能随速度增加而减小(响应更快)

🌊 三、速度太低反而航向难以改变?

是的!在低速(尤其是近于静止)时:

  • 水流过舵的速度趋近于0
  • 舵面没有足够水动力,几乎不产生偏航力
  • 船的航向角几乎不响应舵角(可能需要靠侧推器、牵引或拖船)

🧠 工程启发

  • 船舶控制系统必须根据当前航速调整舵效应增益
  • 自动驾驶系统中需要建立速度-航向耦合模型(非线性控制或增益调度)
  • 在倒车或靠港等低速工况下,需使用其他操控机制(如侧推、变距螺旋桨)

✅ 总结

速度状态舵角对航向角影响
高速响应强,偏航快
中速正常反应
低速响应迟钝或无效

是否需要我:
A. 推导包含速度项的航向动力学模型?
B. 给出一个带速度调度的控制律(例如增益调度PID)?
C. 提供某类船舶(如渔船、巡逻艇)的具体速度-舵响应数据拟合?
D. 构建仿真模型演示速度对航向响应的影响?

请选择或补充你的背景需求,我来详细展开。

继续提问

T就是时间常数,T越大,响应越慢。K代表增益,影响的又是什么?

回答

很好!你对时间常数 T T T 的理解完全正确:

T 越大,系统响应越慢;T 越小,响应越快。

现在来重点解释你问的核心问题:

增益 K K K 在舵角-航向角模型中到底代表什么,它影响的是什么?


🔍 一、回顾一阶 Nomoto 模型

这是最常见的简化模型:

T d ψ ( t ) d t + ψ ( t ) = K δ ( t ) T \frac{d\psi(t)}{dt} + \psi(t) = K \delta(t) Tdtdψ(t)+ψ(t)=(t)

  • ψ ( t ) \psi(t) ψ(t):航向角(单位通常是弧度或度)
  • δ ( t ) \delta(t) δ(t):舵角(单位通常是弧度或度)
  • T T T:时间常数,控制航向响应速度
  • K K K稳态增益,控制最终航向变化的幅度

🎯 二、K 的物理意义(稳态响应)

假设舵角突然施加一个恒定值 δ 0 \delta_0 δ0,然后保持不变。系统最后达到一个稳态航向角 ψ ∞ \psi_{\infty} ψ

令系统稳定后 d ψ d t = 0 \frac{d\psi}{dt} = 0 dtdψ=0,则原方程变为:

ψ ∞ = K δ 0 \psi_{\infty} = K \delta_0 ψ=Kδ0

✅ 所以:

  • K 是“每单位舵角”引起的最终航向角变化量
  • K 的单位是“度/度”或“弧度/弧度”,本质是个比例因子

🚢 三、工程理解(越大越灵)

K 值船舶响应表现
K K K小舵角就能引起大的航向变化,舵效好
K K K同样舵角只引起小的航向变化,舵效弱
  • 在同样的时间常数 T T T 下,K 决定了“转得多不多”
  • 高速船、舵面积大的船一般 K 也比较大

🧮 四、频域响应角度

如果你从控制理论角度看:

传递函数:

Ψ ( s ) Δ ( s ) = K T s + 1 \frac{\Psi(s)}{\Delta(s)} = \frac{K}{Ts + 1} Δ(s)Ψ(s)=Ts+1K

  • K K K 是系统直流增益
  • 决定的是系统对舵角输入的“幅度响应”

🧠 总结图示

假设输入一个阶跃舵角 δ ( t ) = δ 0 \delta(t) = \delta_0 δ(t)=δ0,响应曲线如下:

参数变化航向响应曲线特点
增大 T T T响应变慢,斜率更缓
增大 K K K最终偏转角变大,响应更灵敏

✅ 结论:

  • T T T 控制响应速度
  • K K K 控制响应幅度
  • 两者一起决定舵角对航向的控制“效率”和“动态特性”

如果你愿意,我可以:
A. 绘制不同 T , K T, K T,K 值下的响应曲线图
B. 演示实际船舶如何标定这些参数
C. 给出一个包含 K K K 与航速、舵面积的关联模型
D. 展示控制器设计如何针对 K , T K, T K,T 进行优化

请选择一个方向,我可以继续深入。

继续提问

在这里插入图片描述
我觉得你前面这个动力学方程(如图)要么是错的,要么应该被分解一下为好。分解为两个部分:

  1. 第一个部分是:舵角以及此时的纵向速度与对应的转向力矩之间的动力学映射关系
  2. 第二个部分是:转向力矩和转向角速度之间的对应关系。

其中,第二个部分,即便是桨舵模型,对于同一艘船,在动力学方程上和差速模型的结构应该是一样的(区别仅仅是一些参数的不同)

现在第一个部分的模型我不太清楚。根据业界的共识,这个第一个部分的动力学方程的结构形式是怎么样的?

回答

非常棒的问题,你的思考方式是动力学结构解耦的经典范式,确实比直接用 Nomoto 模型更贴近物理实际。

你提出的拆分:

1. 舵角 + 船速 → 力矩(M)
2. 力矩(M)→ 偏航角速度(r) 或 偏航角(ψ)

是完全合理且符合现代建模的分层思想。


🔁 我们先讲结构逻辑:

你关心的是第一个部分:

舵角 + 纵向速度(u) → 偏航力矩(M_z)


✅ 一、行业共识:舵角产生的偏航力矩动力学结构(第 1 阶段)

在船体坐标系下的力矩来源

舵面会产生侧向力 F r F_r Fr,该力与纵向速度 u u u 和舵角 δ \delta δ 相关。

然后这个力通过偏置距离 l r l_r lr(舵到质心的距离)产生偏航力矩 M z M_z Mz


通用经验模型:

M z = 1 2 ρ V 2 A r C n ( δ ) ⋅ l r M_z = \frac{1}{2} \rho V^2 A_r C_n(\delta) \cdot l_r Mz=21ρV2ArCn(δ)lr

其中:

  • ρ \rho ρ:水密度
  • V V V:纵向速度(船速)
  • A r A_r Ar:舵面积
  • C n ( δ ) C_n(\delta) Cn(δ):法向力系数(随舵角变化,通常可近似 ∝ δ \propto \delta δ 在线性小角度范围内)
  • l r l_r lr:舵到重心的距离

✅ 简化结构模型:线性小角度下

M z = K 1 V 2 δ M_z = K_1 V^2 \delta Mz=K1V2δ

其中 K 1 = 1 2 ρ A r C n δ l r K_1 = \frac{1}{2} \rho A_r C_{n\delta} l_r K1=21ρArCnδlr


更完整的表达式可写作:

M z = f ( δ , V ) = K 1 V 2 δ + K 2 V δ 2 + ⋯ M_z = f(\delta, V) = K_1 V^2 \delta + K_2 V \delta^2 + \cdots Mz=f(δ,V)=K1V2δ+K2Vδ2+

  • 小角度、低速:线性项主导
  • 大角度:二阶非线性项显著
  • 舵延迟和流体惯性未建入此模型中,如需更精确应引入动态延迟模型(如 Rudder Transfer Function)

✅ 二、偏航动力学方程(第 2 阶段)

你也说得非常对,无论是差速推进模型(如双螺旋桨船)还是常规舵船,这部分动力学是一样的,只是力矩来源不同,结构是统一的:

I z r ˙ = M z − N r r − N v v + … I_z \dot{r} = M_z - N_r r - N_{v} v + \dots Izr˙=MzNrrNvv+

  • I z I_z Iz:船体绕 z 轴转动惯量
  • r = ψ ˙ r = \dot{\psi} r=ψ˙:偏航角速度
  • M z M_z Mz:外部偏航力矩(来自舵、侧推、桨流等)
  • N r N_r Nr:与偏航角速度相关的阻尼项
  • N v N_v Nv:横向速度引起的偏航耦合项

这是业界广泛采用的动力学基础结构。


📦 综合表示(你要的“解耦结构”):

1.   舵   →   偏航力矩: M z = K 1 V 2 δ 2.   力矩   →   偏航角速度: I z r ˙ = M z − N r r − N v v 3.   偏航角更新: ψ ˙ = r \begin{aligned} &\textbf{1. 舵 → 偏航力矩:} && M_z = K_1 V^2 \delta \\ &\textbf{2. 力矩 → 偏航角速度:} && I_z \dot{r} = M_z - N_r r - N_v v \\ &\textbf{3. 偏航角更新:} && \dot{\psi} = r \end{aligned} 1.  → 偏航力矩:2. 力矩 → 偏航角速度:3. 偏航角更新:Mz=K1V2δIzr˙=MzNrrNvvψ˙=r


📚 工业/研究中的一致认知:

这个解耦结构广泛用于:

  • MMG 模型(Maneuvering Mathematical Modeling Group)
  • 模拟器(船桥模拟、智能航行)
  • 控制系统设计(舵机控制、路径规划)
  • CFD 数据拟合与辨识

✅ 小结

你所提出的分层方式(舵角/速度 → 力矩,再由力矩驱动转动方程)不仅物理合理,而且与业界建模方法一致,比直接套 Nomoto 更通用也更可扩展。


如果你希望我进一步展开,比如:

A. 更完整的舵-力模型(含非线性、滞后)
B. 用实验数据拟合 K 1 K_1 K1 C n ( δ ) C_n(\delta) Cn(δ) 等参数
C. 结合 CFD 数据构建 data-driven force model
D. 将该模型编码为仿真模块(Python 或 Simulink)

请告诉我你更关注哪部分,我来继续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值