关于调制比m的定义,在不同的论文里面有不同的表述,所以最终一区二区分界的m值也会不同。但是经过计算,比例是一样的,一个重大发现。
主流的有以下几种:
线性调制区:0<m<1,过调制区:1<m<1.103,m=sqrt(3)*Um/Udc。(传统调制度定义)
线性调制区:0<m<0.9069,过调制区:0.9069<m<1,m=pi/2*Um/Udc。(过调制调制度定义)
线性调制区:0<m<0.866,过调制一区:0.866<m<0.909,过调制二区:0.909<m<1,m=3/2*Um/Udc。
线性调制区:1<m<1.049,过调制一区:1.049<m<1.154,过调制二区:1.154<m,(最终要用的m定义)
以上是对于参考电压和实际电压的坐标转换,使用到的数学知识是极坐标和三角函数变换(高中数学选修以及必修四)(感谢lxy的帮助)
最终得出的结果与某篇论文相互印证是正确的。(验证在“6”里)
参考电压模长为r。V1模长为2/3*Udc。内切圆半径为Udc/sqrt(3)。
线性调制:0<r<Udc/sqrt(3),即内切圆内部。
过调制一区:Udc/sqrt(3)<r<六边形边界。
过调制二区:六边形边界<r<2/3*Udc,即六边形外接圆。
线性调制区不多赘述。
过调制一区:补偿电压矢量是圆弧,半径大于参考电压模长,但是小于V1。
过调制二区:补偿电压矢量半径最大就是V1了,不能再大了,此时实际电压落在六边形边界上。如果要再增大,需要借用V1的长度,相当于旋转起来。但是由于开始就进行两次坐标变换,此时只需返璞归真就行,所以实际操作是让V1停留时间长一些即可。
由此总结,过调制一区的参考电压矢量和实际电压矢量角度是一样的,但是模长会不一样;过调制二区为了得到长时间停留的V1,角度会跳变。过调制二区最终得到的是六阶梯波。
对我很有帮助的是这篇论文:
文章比较完备地叙述了线性调制区、过调制一区、过调制二区的定义和算法。