时频分析的应用—外部信号的显影和定点清除

1.时频分析的一个典型应用场景

上面的图样是一张时频图,横坐标是时间,纵坐标是频率,可见的横向波形纹路,不同的颜色标志着主要的干扰源,它们是50Hz工频谐波。

这类信号在数据分析领域往往是需要过滤掉的杂波。因为这类信号足够强,所以他会在频域弥漫为一组同样特征的谐波信号,比如450HZ的是9倍频,而下移7.5hz的同样振幅的信号,显然是另一种谐振波形。

这类信号,可以通过信号的自相关特性几乎完全消除掉:

 这个一个典型应用,记录在这篇文章中:

你能想到它的可能应用场景吗?

比如,对于超强的电力线干扰信号,其实可以作为基础电压和电流的一种度量方式——在某些应用场景中,电气设备的供电波动可能很大,对强电直接采集电压又有安全隐患。

还比如,振动分析领域,振动体的振动度量是要去除外部振动信号影响的:

在这种场景,刚好可以采用这种自适应滤波算法把外部振动消除掉。

时频分析,依据部署的点位特征和大致的频率范围,利用自相关加顶多五到十组数据互相关时频图,就能看出这种明显的外部信号,并将其消除掉。而且,对于一些产品特征隐藏,内部频点不可知的黑匣子系统,也能通过这类时频图找到特定的频点。并且不依赖转速测量设备,找到关键的转速参数。

时频图,是振动分析的钥匙。然后,时频分析,不仅仅可以获得某个信号的趋势数据,还可以作为信号实时分析的一部分来对信号本身进行去噪处理。这类应用,你想到了吗?

从这个视角出发,大概率,下面这篇分析变速箱振动的文章中:

观测到的F点轴心振动轨迹的问题,并不是齿轮箱自身的振动,而是驱动滚筒的一个外部冲击振动信号,从信号本身的时域间隔,就能看出,它是不是源自外齿轮啮合产生的冲击性振动。将对称的D端与F端做差分处理,也能看到那个外部振动信号。驱动端振动不够强,从动端振动反而更强。这也不大不符合逻辑。你觉得呢?

F,D振动的相位偏移也在标志着这个外部振动的传导过程。B点的振动偏心度在进一步降低,表征这个振动并非减速箱引入。

F测点的点位:

这种方法在应用落地时,仍然有一些具体的问题需要克服,比如振动信号往往也符合谐波丰富的特征。但是这些问题终究可以通过一些基础的信号的物理特征来加以分辨。

然后,有一个显然的结论,将信号转变为那类类似照片的灰度或者伪彩图像后,相应的振动特征极容易被机器学习方法处理,人工的信号分析已经可以退后,人眼能看出的信号特征,机器能识别的更有效。

这是一种精细的数学操作,下图中左侧是采样信号,右侧是经过处理后的信号,高斯噪声依然保留,甚至强干扰频点的有效信号,仍然会被保留:

2.CLR方法的基本实施步骤(概要)

  1. 数据频谱分析

    • 对原始时域数据进行傅里叶变换,生成频域功率谱。通过峰值检测算法识别出显著的相干线(如单频或窄带信号),这些谱线通常表现为异常高幅值且频率稳定的成分。
  2. 噪声模板构建

    • 对检测到的相干线进行参数化建模。例如,对于单一频率的噪声,可用正弦函数描述其幅度、频率和相位;对于调制信号(如搜索结果7中提到的激光二极管高频调制),则需结合载波频率和调制参数构建更复杂的模板。
  3. 模板匹配与自适应滤波

    • 通过最小二乘法或最大似然估计,将噪声模板与原始数据在时域或频域进行匹配。调整模板参数(如相位延迟)以最大化相关性,从而精确捕获噪声成分的结构。
  4. 噪声成分的减法操作

    • 从原始数据中减去匹配后的噪声模板,保留剩余的非相干信号。此步骤需注意避免过度拟合,通常通过迭代优化或引入正则化约束来平衡噪声抑制与信号保留。
  5. 结果验证与迭代优化

    • 对处理后的数据重新进行频谱分析,验证相干线是否被有效抑制。若残留噪声仍显著,则调整检测阈值或模板复杂度并重复上述步骤(如搜索结果12中提到的局部与全局优化结合策略)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子正

thanks, bro...

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值