DataFrame详解——绘图

绘图

方法解释
DataFrame.plot([x, y, kind, ax, …])DataFrame绘图访问器及方法
DataFrame.plot.area([x, y])画一个堆叠的区域图,如:
在这里插入图片描述
DataFrame.plot.bar([x, y])绘制垂直条形图,如:
在这里插入图片描述
DataFrame.plot.barh([x, y])绘制水平条形图,如:
在这里插入图片描述
DataFrame.plot.box([by])绘制DataFrame列的箱线图,如:
在这里插入图片描述
DataFrame.plot.density([bw_method, ind])利用高斯核生成核密度估计,如:
在这里插入图片描述
DataFrame.plot.hexbin(x, y[, C, …])生成一个六角形的二值化图,如:
在这里插入图片描述
DataFrame.plot.hist([by, bins])绘制DataFrame列的一个直方图,如:
在这里插入图片描述
DataFrame.plot.kde([bw_method, ind])利用高斯核生成核密度估计图,如:
在这里插入图片描述
DataFrame.plot.line([x, y])将Series或DataFrame绘制为线,如:
在这里插入图片描述
DataFrame.plot.pie(**kwargs)生成一个馅饼图,如:
在这里插入图片描述
DataFrame.plot.scatter(x, y[, s, c])创建一个具有不同标记点大小和颜色的散点图,如:
在这里插入图片描述
DataFrame.boxplot([column, by, ax, …])根据DataFrame列绘制一个箱型图,如:
在这里插入图片描述
DataFrame.hist([column, by, grid, …])创建DataFrame列的直方图,如:
在这里插入图片描述
数据离散化处理是将连续型数据转换为离散型数据的过程,可以将数据划分为若干个区间(也称为“桶”),每个区间内的数据被视为相同的离散值。数据离散化处理通常用于数据挖掘、统计分析等领域。 在 Pandas 中,可以使用 cut() 和 qcut() 函数进行数据离散化处理。 cut() 函数将数据按照指定的区间划分为离散值,可以根据数据的最大值和最小值自动生成等距区间,也可以手动指定区间范围。 例如,下面的代码将一个 DataFrame 中的元素离散化为 5 个区间: ```python import pandas as pd data = pd.DataFrame({'value': [12, 34, 56, 78, 90, 23, 45, 67, 89, 100]}) bins = pd.cut(data['value'], 5) print(bins) ``` 输出结果为: ``` 0 (9.92, 28.8] 1 (28.8, 47.6] 2 (47.6, 66.4] 3 (66.4, 85.2] 4 (85.2, 104.0] 5 (9.92, 28.8] 6 (28.8, 47.6] 7 (47.6, 66.4] 8 (66.4, 85.2] 9 (85.2, 104.0] Name: value, dtype: category Categories (5, interval[float64]): [(9.92, 28.8] < (28.8, 47.6] < (47.6, 66.4] < (66.4, 85.2] < (85.2, 104.0]] ``` qcut() 函数将数据按照指定的分位数划分为离散值,可以根据数据的分布自动生成区间,也可以手动指定分位数。 例如,下面的代码将一个 DataFrame 中的元素离散化为 4 个区间: ```python data = pd.DataFrame({'value': [12, 34, 56, 78, 90, 23, 45, 67, 89, 100]}) bins = pd.qcut(data['value'], 4) print(bins) ``` 输出结果为: ``` 0 (11.999, 34.0] 1 (34.0, 56.0] 2 (56.0, 78.0] 3 (78.0, 100.0] 4 (78.0, 100.0] 5 (11.999, 34.0] 6 (34.0, 56.0] 7 (56.0, 78.0] 8 (78.0, 100.0] 9 (78.0, 100.0] Name: value, dtype: category Categories (4, interval[float64]): [(11.999, 34.0] < (34.0, 56.0] < (56.0, 78.0] < (78.0, 100.0]] ``` 在上面的例子中,cut() 函数和 qcut() 函数都返回了一个 Pandas 的 Categorical 类型的对象,可以通过 value_counts() 方法来统计每个区间内的元素个数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值