时间序列预测——双向LSTM(Bi-LSTM)

  本文展示了使用双向LSTM(Bi-LSTM)进行时间序列预测的全过程,包含详细的注释。整个过程主要包括:数据导入、数据清洗、结构转化、建立Bi-LSTM模型、训练模型(包括动态调整学习率和earlystopping的设置)、预测、结果展示、误差评估等完整的时间序列预测流程。  本文使用的数据集在本人上传的资源中,链接为mock_kaggle.csv代码如下:import pandas as pdimport numpy as npimport mathimport kerasfrom ma
摘要由CSDN通过智能技术生成

  本文展示了使用双向LSTM(Bi-LSTM)进行时间序列预测的全过程,包含详细的注释。整个过程主要包括:数据导入、数据清洗、结构转化、建立Bi-LSTM模型、训练模型(包括动态调整学习率和earlystopping的设置)、预测、结果展示、误差评估等完整的时间序列预测流程。
  本文使用的数据集在本人上传的资源中,链接为mock_kaggle.csv

代码如下:

import pandas as pd
import numpy as np
import math
import keras
from matplotlib import pyplot as plt
from matplotlib.pylab import mpl
import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler
from keras import backend as K
from keras.layers import LeakyReLU
from sklearn.metrics import mean_squared_error # 均方误差
from keras.callbacks import LearningRateScheduler
from keras.callbacks import EarlyStopping
from tensorflow.keras import Input, Model,Sequential
from keras.layers import Bidirectional#, Concatenate
mpl.rcParams['font.sans-serif'] = ['SimHei']   #显示中文
mpl.rcParams['axes.unicode_minus']=False       #显示负号

取数据

data=pd.read_csv('mock_kaggle.csv',encoding ='gbk',parse_dates=['datetime'])
Date=pd.to_datetime(data.datetime)
data['date'] = Date.map(lambda x: x.strftime('%Y-%m-%d'))
datanew=data.set_index(Date)
series = pd.Series(datanew['股票'].values, index=datanew['date'])
series
date
2014-01-01    4972
2014-01-02    4902
2014-01-03    4843
2014-01-04    4750
2014-01-05    4654
              ... 
2016-07-27    3179
2016-07-28    3071
2016-07-29    4095
2016-07-30    3825
2016-07-31    3642
Length: 937, dtype: int64

滞后扩充数据

dataframe1 = pd.DataFrame()
num_hour = 16
for i in range(num_hour,0,-1):
    dataframe1['t-'+str(i)] = series.shift(i)
dataframe1['t'] = series.values
dataframe3=dataframe1.dropna()
dataframe3.index=range(len(dataframe3))
dataframe3
t-16 t-15 t-14 t-13 t-12 t-11 t-10 t-9 t-8 t-7 t-6 t-5 t-4 t-3 t-2 t-1 t
0 4972.0 4902.0 4843.0 4750.0 4654.0 4509.0 4329.0 4104.0 4459.0 5043.0 5239.0 5118.0 4984.0 4904.0 4822.0 4728.0 4464
1 4902.0 4843.0 4750.0 4654.0 4509.0 4329.0 4104.0 4459.0 5043.0 5239.0 5118.0 4984.0 4904.0 4822.0 4728.0 4464.0 4265
2 4843.0 4750.0 4654.0 4509.0 4329.0 4104.0 4459.0 5043.0 5239.0 5118.0 4984.0 4904.0 4822.0 4728.0 4464.0 4265.0 4161
3 4750.0 4654.0 4509.0 4329.0 4104.0 4459.0 5043.0 5239.0 5118.0 4984.0 4904.0 4822.0 4728.0 4464.0 4265.0 4161.0 4091
4 4654.0 4509.0 4329.0 4104.0 4459.0 5043.0 5239.0 5118.0 4984.0 4904.0 4822.0 4728.0 4464.0 4265.0 4161.0 4091.0 3964
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
916 1939.0 1967.0 1670.0 1532.0 1343.0 1022.0 813.0 1420.0 1359.0 1075.0 1015.0 917.0 1550.0 1420.0 1358.0 2893.0 3179
917 1967.0 1670.0 1532.0 1343.0 1022.0 813.0 1420.0 1359.0 1075.0 1015.0 917.0 1550.0 1420.0 1358.0 2893.0 3179.0 3071
918 1670.0 1532.0 1343.0 1022.0 813.0 1420.0 1359.0 1075.0 1015.0 917.0 1550.0 1420.0 1358.0 2893.0 3179.0 3071.0 4095
919 1532.0 1343.0 1022.0 813.0 1420.0 1359.0 1075.0 1015.0 917.0 1550.0 1420.0 1358.0 2893.0 3179.0 3071.0 4095.0 3825
920 1343.0 1022.0 813.0 1420.0 1359.0 1075.0 1015.0 917.0 1550.0 1420.0 1358.0 2893.0 3179.0 3071.0 4095.0 3825.0 3642

921 rows × 17 columns

二折划分数据并标准化

pd.DataFrame(np.random.shuffle(dataframe3.values))  #shuffle
pot=len(dataframe3)-12
train
  • 35
    点赞
  • 371
    收藏
    觉得还不错? 一键收藏
  • 27
    评论
时间序列预测是一种常见的问题,可以使用LSTM(长短期记忆)模型来解决。LSTM是一种循环神经网络(RNN),能够有效地捕捉时间序列中的长期依赖关系。 下面是一个使用Python和Keras库实现LSTM模型进行时间序列预测的示例代码: ```python import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import LSTM, Dense # 读取时间序列数据 data = pd.read_csv('data.csv') # 替换为实际的数据文件路径 # 数据预处理 # 将数据拆分为训练集和测试集 train_data = data.iloc[:800] # 使用前800个数据作为训练集 test_data = data.iloc[800:] # 使用后面的数据作为测试集 # 构建特征和标签 def create_dataset(dataset, look_back): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:i + look_back]) Y.append(dataset[i + look_back]) return np.array(X), np.array(Y) look_back = 10 # 定义用于预测的时间步长 train_X, train_Y = create_dataset(train_data, look_back) test_X, test_Y = create_dataset(test_data, look_back) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, activation='relu', input_shape=(look_back, 1))) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=32) # 预测 train_predict = model.predict(train_X) test_predict = model.predict(test_X) # 可视化结果 import matplotlib.pyplot as plt # 绘制训练集和测试集的实际值 plt.plot(np.arange(len(train_data)), train_data, 'b', label='actual') plt.plot(np.arange(len(train_data), len(train_data) + len(test_data)), test_data, 'g', label='actual') # 绘制训练集和测试集的预测值 plt.plot(np.arange(look_back, len(train_predict) + look_back), train_predict, 'r', label='predicted') plt.plot(np.arange(len(train_predict) + look_back, len(train_predict) + look_back + len(test_predict)), test_predict, 'y', label='predicted') plt.legend() plt.show() ``` 在上面的代码中,首先读取时间序列数据,然后将数据拆分为训练集和测试集。接下来,通过定义一个`create_dataset`函数将时间序列数据转换为特征和标签,其中特征是前`look_back`个时间步长的数据,标签是下一个时间步长的数据。然后,使用Keras库构建一个简单的LSTM模型,并编译模型。 训练模型时,使用训练集的特征和标签进行训练。训练完成后,使用训练集和测试集的特征进行预测,并将结果可视化。 请注意,上述代码仅为示例,实际使用时可能需要根据具体情况进行适当调整。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值