有限元是求解微分方程。
弹性力学的微分方程是
拉普拉斯方程+平衡方程+边界条件
其中拉普拉斯方程是偏微分方程。
流体采用有限差分法,因为求解方程建立在欧拉坐标系,便于流体观察。
固体多采用有限元,坐标固结在构件,且适用于复杂形状。
固体力学求解偏微分方程主要使用的方法是求解偏微分方程的等效积分形式的方程。
等效积分表示在域内任一点,任意函数和微分方程乘积的积分都为0。
∫
Ω
v
T
A
(
u
)
d
Ω
=
0
\int_{\Omega}v^TA(u){\rm d}\Omega = 0
∫ΩvTA(u)dΩ=0
在边界上,边界条件和任意函数的乘积积分为0。
∫
T
v
‾
B
(
u
)
d
T
=
0
\int_{\Tau}\overline{v}B(u){\rm d}\Tau = 0
∫TvB(u)dT=0
等效积分形式可以采用分部积分,降低被求函数u的阶数,提高任意函数的阶数,从而降低自身连续性的要求。这被称为等效积分的弱形式。
加权余量法是
把 u 近似的用
u
=
∑
i
=
1
n
N
i
a
i
=
N
a
.
u = \sum_{i=1}^nN_ia_i = Na .
u=i=1∑nNiai=Na.
替代。
则A(u)的余量为R
B(u)的余量为
R
‾
\overline{R}
R
取试探函数对余量积分为0得到对应的
a
i
a_i
ai。
∫
Ω
W
j
T
A
(
N
a
)
d
Ω
+
∫
T
W
‾
j
T
B
(
N
a
)
d
T
=
0
\int_{\Omega}W_j^TA(Na){\rm d}\Omega + \int_{\Tau} \overline{W}_j^TB(Na){\rm d}\Tau = 0
∫ΩWjTA(Na)dΩ+∫TWjTB(Na)dT=0
试探函数取
W
‾
j
=
W
j
=
−
N
j
\overline{W}_j = W_j = -N_j
Wj=Wj=−Nj即为伽辽金法。
伽辽金法的好处是如果A是2m阶线性自伴随的,此法得到的求解方程系数矩阵是对称的。这是有限元采用此法的原因。
2021-06-22
最新推荐文章于 2024-11-01 13:37:21 发布
本文介绍了有限元在弹性力学中的应用,重点讲解了如何通过拉普拉斯方程、平衡方程和边界条件来求解问题。特别提到固体力学中采用等效积分形式的弱形式,以及加权余量法(如伽辽金法)的应用,强调了其在自伴随线性方程组上的对称性优势。
摘要由CSDN通过智能技术生成